
Fachhochschule Münster

Fachbereich Elektrotechnik und Informatik

Masterarbeit

zur Erlangung

des akademischen Grades

Master of Science (M.Sc.)

im Studiengang Informatik

Design and Implementation of a Hardware Accelerated,
General Purpose and Coverage-Guided Operating System

Fuzzer

Erstprüfer: Prof. Dr.-Ing. Sebastian Schinzel

Zweitprüfer: Hendrik Schwartke M.Sc.

vorgelegt am 13. Dezember 2016

von Sergej Schumilo

Matrikel-Nr. 700075

3

Eidesstattliche Erklärung

Ich versichere, die von mir vorgelegte Arbeit selbständig verfasst zu haben. Alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten
anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen
und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die Arbeit hat in
gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen und ist
noch nicht veröffentlicht worden. Ich bin mir bewusst, dass eine unwahre Erklärung
rechtliche Folgen haben wird.

Steinfurt, 13. Dezember 2016,
Unterschrift

4

I

Abstract

Memory corruption bugs are common vulnerabilities and can be encountered in user
mode applications as well as in kernel code. Past experience has shown, that attackers
were more focused on the exploitation of user mode vulnerabilities, since those bugs
are much easier and more reliable to exploit. With the advent of more enforcing security
mechanism provided by the kernel, the exploitation has become much harder. Since
comprehensive kernel self-protecting is hard to achieve, attackers have started to focus
more on kernel vulnerabilities, instead.
Unfortunately, kernel bugs are typically much harder to spot, especially in closed source
operating systems. This thesis describe the design and implementation of a novel ap-
proach to find kernel vulnerabilities in an automated fashion using latest Intel pro-
cessor features and fuzzing methods, which has proven as highly efficient in the field
of fuzzing user mode applications. Moreover, this approach is potentially able to fuzz
even closed source operating systems. The first implementation outperforms other ker-
nel fuzzers and has found several security vulnerabilities in the Linux kernel during
development.

II

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Related Work . 2
1.3 Structure of the Work . 3

2 Background 5
2.1 American Fuzzy Lop . 5

2.1.1 General . 5
2.1.2 Algorithm . 6
2.1.3 Fuzzing Techniques . 7
2.1.4 AFL-Bitmap . 8
2.1.5 Fork-Server . 10
2.1.6 Runtime Complexity . 10
2.1.7 Challenges of Applying AFL on Kernelspace 11

2.2 Intel VT-x . 12
2.2.1 Terminology . 12
2.2.2 General . 12
2.2.3 VMX Operation . 14
2.2.4 VMX Transitions . 14
2.2.5 Virtual Machine Control Structures 15

2.3 KVM / QEMU . 17
2.3.1 General . 17
2.3.2 KVM Architecture . 18
2.3.3 KVM API . 18

2.4 Intel Processor Trace . 20
2.4.1 Execution Information Packets . 20
2.4.2 Flow Information Packets . 21
2.4.3 Intel PT Software Decoder . 22

III

IV CONTENTS

2.4.4 Trace Filtering . 23
2.4.5 Table of Physical Addresses . 24
2.4.6 VMX Tracing . 27

3 Design and Implementation 29
3.1 kAFL Fuzzer . 30

3.1.1 Architecture . 31
3.1.2 Compiler Wrapper . 33
3.1.3 kAFL Guest Device . 34
3.1.4 kAFL Guest Driver . 36
3.1.5 Inter-VM Communication . 38

3.2 vmx_pt KVM Extension . 40
3.2.1 Intel PT Aware Hypervisor . 41
3.2.2 ToPA Configuration . 42
3.2.3 Entry / Exit Handling . 44
3.2.4 Userspace Interface . 46

3.3 QEMU PT . 48
3.3.1 vmx_pt Integration . 48
3.3.2 Management Interface . 50

3.4 JIT-Decoder . 52
3.4.1 Decoding of Trace Data . 53
3.4.2 Binary Disassembling and Model Transfer 54
3.4.3 Fetch and Follow . 57
3.4.4 Bitmap Translations . 59
3.4.5 Trace Data Sanitization . 60

4 Evaluation 63
4.1 vmx_pt Overhead . 64
4.2 Decoder Engine . 65
4.3 Fuzzing Performance . 66
4.4 Vulnerabilities . 68

5 Future Work 69
5.1 Sanitization of Non-Deterministic Code Traces 69
5.2 Inter-VM Communication via Hypercalls 69

6 Conclusion 71

List of Figures

2.1 Binary Translation and Intel VT-x . 13
2.2 VMX Transitions . 15
2.3 ToPA Entry Structure . 24
2.4 Table of Physical Addresses . 26

3.1 kAFL Screenshot . 30
3.2 kAFL Architecture . 31
3.3 Guest User Mode Loader . 38
3.4 Guest Fuzzing Loop . 39
3.5 Intel PT VM Only Tracing . 41
3.6 vmx_pt ToPA Configuration . 43
3.7 KVM / vmx_pt and QEMU Execution Loop 48
3.8 JIT-Decoder Data Structure . 56

4.1 vmx_pt Overhead Comparison (Compiling QEMU-2.6.0) 64
4.2 JIT-Decoder and Intel ptxed Performance Comparison 66
4.3 Performance Comparison . 67

V

VI LIST OF FIGURES

List of Tables

2.1 CoFI Types . 21

3.1 Common Usages of Intel PT and VMX . 41

3.2 vmx_pt ioctl() Interface . 47

3.3 QEMU PT Management Console Commands 50

List of Listings

2.1 Disassembly of an unmodified basic block 9
2.3 AFL Instrumentation . 9
2.4 Linear AFL Problem . 11
2.5 Difficult AFL Problem . 11
2.6 KVM API interaction . 19
3.1 kAFL Linux x86-64 instrumentation assembly 33
3.2 kAFL Linux x86-64 panic handler . 38
3.3 vmx_pt Entry Handler . 44
3.4 vmx_pt Exit Handler . 45
3.5 Extended KVM-loop within ./kvm-all.c 49
3.6 Sample Interaction with the Management Console of QEMU PT 51
3.7 JIT-Decoder Data Structures . 54
3.8 Modified AFL hash function . 59
3.9 Interrupt / Asynchronous Event (Intel PT Signature) 60
4.1 Sample Kernel Module for Benchmark Purposes 67

VII

VIII LIST OF LISTINGS

Chapter 1

Introduction

Several vulnerability-classes such as memory corruptions, race conditional memory
accesses, and use-after-free vulnerabilities are known threats for programs running in
user mode as well as for the Operating System (OS) core itself. Past experience has
shown that attackers are typically focusing on user mode applications. This is because
vulnerabilities in user mode programs are notoriously easier and more reliable to ex-
ploit. However, with the appearance of different kinds of exploit defense mechanisms,
especially in user mode, it has become much harder to exploit known vulnerabilities
nowadays. Due to those advanced defense mechanisms in user mode, the kernel has
become even more appealing to an attacker, since most kernel defense mechanisms are
not mandatory in use. This is due to more complex implementations, which may affect
the system performance and therefore are deactivated by default. Furthermore, some
of them are not part of the official mainline code base or even require latest CPU exten-
sion support (e.g. SMAP / SMEP on x86-64). Nevertheless, with the compromise of the
OS, an attacker typically gains full access to the system resources (except for virtualized
systems). Kernel-level vulnerabilities are usually used for privilege escalation exploits
or kernel-based rootkits to gain persistence.

Since such vulnerabilities are in general difficult to spot, recent fuzzing techniques
have proven as promising to discover bugs in an automated fashion. Especially the
novel fuzzer AFL (American Fuzzy Lop) has shown an effective way of finding mem-
ory corruption type bugs coverage-guided. Instead of applying bruteforce fuzzing on
the targeted application, AFL measures feedback from within the application to rate
the progress. A simplified genetic algorithm is based on this progress rate and used to
synthesize new inputs, which may trigger new path executions. Unfortunately, AFL is
limited to apply fuzz testing on userspace applications only and suffers lack of kernel
support.

1

2 CHAPTER 1. INTRODUCTION

1.1 Contribution

This thesis proposes an approach to fuzz x86-64 based operating systems without any
recompilation needed by utilizing latest Intel CPU extensions. This includes the lever-
age of Intel Processor Trace, a new CPU feature which provides flow information about
running code directly by hardware. Furthermore it describes the design and develop-
ment of a novel kernel fuzzer which is partially inspired by the AFL fuzzing model and
uses the above mentioned approach. This fuzzer is able to fuzz any x86-64 operating
system, which includes even closed-source code. The only requirement to fuzz an op-
erating system is the ability to load a specific required driver. In comparison to other
feedback-driven kernel fuzzers, the proposed approach provides higher efficiency due
to hardware-acceleration. In addition, it provides high effectiveness due to the used
fuzzing engine inspired by AFL and it does not require any recompilation of targeted
supervisor code. Therefore, it is capable of fuzzing closed-source operating systems.
To summarize, this thesis contributes with the following:

(I) An approach to extend KVM to become an Intel PT aware Virtual Machine Mon-
itor (VMM). Based on this research an academic prototype called vmx_pt was de-
veloped. To our best knowledge, this is the first implementation of an Intel PT
aware VMM, which allows to trace multiple guest’s vCPU without any race con-
ditional side effects.

(II) An appropriate interface for QEMU to use vmx_pt capabilities in real world usage.
To process the proprietary Intel Process trace format rapidly, an own Intel PT
decoder was developed with a focus on efficiency.

(III) A kernel fuzzer, called kAFL (kernel AFL), which is able to fuzz any virtualized
OS by utilizing KVM, vmx_pt, and QEMU. Due to multiprocessing and Intel Pro-
cess Trace, kAFL is extremely fast compared to other kernel fuzzers.

It is also intended to publish all of these implementations as GPLv2 licensed software
during the next few months.

1.2 Related Work

An unofficial Google project called syzkaller was released by Dmitry Vyukov in Oc-
tober 2015 and is the first publicly available graybox coverage-guided kernel fuzzer

1.3. STRUCTURE OF THE WORK 3

[Vyu]. As of time of writing, up to 211 kernel bugs have been found by using syzkaller*.

Vegard Nossum and Quentin Casanovas demonstrate that most linux file system drivers
are vulnerable to feedback-driven fuzzing by using an adapted version of AFL [NC16].
This modified AFL version is based on gluecode to the kernel in form of a driver in-
terface to measure feedback during fuzzing file system drivers of the own kernel and
expose this data to the userspace. Nossum and Casanovas presented this modified ver-
sion of AFL at Vault 2016. Their work was published later this year and is available
at Github †. Since their fuzzer runs inside the targeted operating system, an occurred
crash then terminates the fuzzing session.

In summer 2016 Jesse Hertz and Tim Newsham released a modified version of AFL
called ProjectTriforce [HN16b]. Their work is based on a modification of QEMU and uti-
lizes the corresponding emulation backend to measure fuzzing progress by determin-
ing the current instruction pointer after execution of a control flow altering instruction.
In theory, their fuzzer is able to fuzz any OS emulated in QEMU. In practice, the Project-
Triforce fuzzer is limited to operating systems that are able to boot from read-only file
systems, which narrows down the candidates to classic UNIX-like operating systems,
such as Linux, FreeBSD, NetBSD, or OpenBSD. Therefore, ProjectTriforce is currently
not able to fuzz closed-source operating systems, such as macOS or Windows.

1.3 Structure of the Work

The structure of the thesis is as follows:

(I) The first chapter provides a brief overview of all technologies used during this
thesis and is essential in order to comprehend further chapters.

(II) Chapter 2 describes the implementation details and concepts applied to kAFL,
the kernel driver for Intel Processor Trace, the decoder engine, and the QEMU
extension.

(III) In Chapter 3 an overview of the measured performance, the performance boost in
relation to other kernel fuzzers, and other considerable Intel PT related insights
is given.

*List of all bugs found by syzkaller (November 2016): https://github.com/google/syzkaller/wiki/
Found-Bugs

†https://github.com/oracle/kernel-fuzzing

https://github.com/google/syzkaller/wiki/Found-Bugs
https://github.com/google/syzkaller/wiki/Found-Bugs
https://github.com/oracle/kernel-fuzzing

4 CHAPTER 1. INTRODUCTION

(IV) Finally, a short conclusion and an overview of future work is given.

Chapter 2

Background

In this chapter the reader is provided with a brief overview of all used concepts and
technologies. This background is essential in order to comprehend further chapters of
this thesis. Chapter 2.1 describes the basic idea and concepts of AFL, which are also
adapted by kAFL. Furthermore, chapter 2.2 introduces briefly the Intel IA-32 virtual-
ization extension to provide virtualization by the hardware itself. In chapter, 2.3 the
process of vCPU creation and KVM / userspace communication are explained. Finally,
the new Intel Processor Trace feature and the way it might be used in VMX operations
is described in chapter 2.4.

2.1 American Fuzzy Lop

This thesis is based on the idea behind the American Fuzzy Lop (AFL) fuzzer. There-
fore, this chapter provides insights into technical aspects and implementation details
of AFL.

2.1.1 General

Fuzzing is a technique for software regression tests. Originally, the term fuzzing was
introduced by Barton Miller at the University of Wisconsin in 1988 [MFS90]. Fuzzers
are usually used to generate specific semi-valid inputs, which may trigger unforeseen
behavior in the targeted application. Such misbehavior can be categorized as a po-
tential bug or even a critical software vulnerability. Therefore, fuzzing has become a
valuable approach in the vulnerability and bug finding process of security researchers.
In general, fuzzing approaches can be categorized in the following three types:

5

6 CHAPTER 2. BACKGROUND

Blackbox-Fuzzers:
Fuzzers which did not examining the source code or the disassembled binary are
called blackbox-fuzzers. Blackbox-fuzzers are not able to make any assumptions
of the possible program behavior. Typically, blackbox-fuzzers are developed to
fuzz specific interfaces, protocols or parser types.

Whitebox-Fuzzers:
Fuzzers utilizing several information based on the source code of the application
are called whitebox fuzzers. A whitebox-fuzzer is able to make assumptions of the
resulting control-flow. Thus, the synthetization process of new fuzzing inputs can
be assisted by source code analysis and control-flow assumptions. This approach
was proven to be effective and was a major topic of recent academic research
[GLM08; CDE08].

Greybox-Fuzzers:
In contrast to whitebox-fuzzers, greybox-fuzzers do not analyze the associated
source code, but the targeted applications disassembly or dynamic runtime in-
formation. As such, they fill the gap between white- and blackbox-fuzzers. To
gain access to dynamic runtime information, greybox-fuzzers usually require a
recompilation of a program using an adapted compiler to insert compile-time in-
strumentations or must rely on other tracing approaches such as PIN [Luk+05],
emulation via QEMU [HN16b] / Bochs [Jur16] or Intel BTS [Swi].

AFL is a modern greybox fuzzer targeting applications userspace. This fuzzer was
originally developed by Michael Zalewski. In contrast to other greybox-fuzzers, AFL
utilizes compile-time instrumentations in the targeted application to generate coverage
metrics and uses an “exceedingly simple but rock-solid instrumentation-guided genetic
algorithm”[Zal]. The basic idea is based on multiple mutation-techniques and brute-
force. This approach has proven as highly effective and is able to find even more bugs
than most whitebox fuzzers.

2.1.2 Algorithm

Although AFL was proven to be highly effective, its theory is quite simple. For illus-
tration purposes, a simplified algorithm representation is given in the following listing
(see algorithm 1).

2.1. AMERICAN FUZZY LOP 7

Algorithm 1: Simplified AFL fuzzing loop algorithm
1 input_queue← gen_queue(initial_inputs)
2 while true do
3 current_payload← get_next(input_queue)
4 foreach strategies do
5 new_input, new_path← MUTATE_STRATEGY(current_payload)
6 if PATH_IS_NEW(new_path) then
7 input_queue← input_queue + new_input

Initially, AFL loads user-provided inputs into the input_queue (Line 1). This input is
termed as seed. It then starts the fuzzing loop based on the seed (Line 2). At the begin-
ning of the loop, ALF chooses the next interesting input based on several information
from the queue. Afterwards, AFL applies several fuzzing techniques on the chosen in-
put, mutates it, and injects it into the targeted application hereafter. Every applied and
injected mutation is measured via compile-time instrumentation feedback. If the newly
generated input hits a new path or rather a new state transition, the associated input
will be appended to the queue for later use.

2.1.3 Fuzzing Techniques

AFL uses six fuzzing techniques to generate new mutation-based inputs, which may
result in new state transitions. Any generated input is discarded and not used for the
next iteration during the same phase, except for the havoc and splicing phase. Those
techniques are also called strategies and are as follows:

Bit-Flips / Byte-Flips:
During the first deterministic fuzzing strategy stage, AFL applies multiple bit- and
byte-flips on the current input data. Therefore, the fuzzer successively bit-flips
(bitwise NOT operation) every bit, applies the newly input to the target appli-
cation and rewinds the modification. This is done for every single bit as well as
for all 2- and 4-bit sequences. Later, the same approach is applied for bytes and
byte-sequences (2 and 4 bytes).

Arithmetic:
As the second deterministic fuzzing strategy, AFL implements the incrementation
and decrementation of 1, 2 and 4 byte values. By default, ALF increments and

8 CHAPTER 2. BACKGROUND

decrements every value up to 35 times. To ensure that every mutation is only ap-
plied once, AFL uses helper functions to distinguish already applied duplicates,
which may have already been generated during this or a prior stage.

Interesting Integers:
As the last deterministic fuzzing stage, AFL replaces bytes and byte-sequences
with known values. For instance, interesting values are MAXINT values for differ-
ent sizes and signedness, NULL-bytes and several 2N variations. To filter already
applied mutations, AFL verifies the uniqueness of newly generated input com-
pared to mutation-based inputs of the prior two stages.

Havoc:
In order to include a certain amount of randomness, the Havoc stage is used.
During the Havoc stages, a varying amount of different fuzzing approaches are
applied on the initial input and reused for several iterations. As the name sug-
gests, this stage injects more variety of unexpected randomness to the current
input.

Splicing:
To extend the Havoc stages, AFL eventually switches thereafter to the Splicing
stage, if no new path was found during previous stages. The Splicing stage is a
combinatorial approach and splices two queued inputs as well as found crash-
inputs together at a random pivot. Afterwards, the Havoc approach is applied on
the combined input for several iterations.

Dictionary:
To deal with less binary-oriented inputs, a more sophisticated approach is needed.
Therefore, AFL uses the additional Dictionary stage. During this stage, AFL in-
jects imported strings in the current input. This stage has proven to be highly
effective for certain types of parsers*.

2.1.4 AFL-Bitmap

To determine state transitions, AFL uses a shared memory buffer which is 64 KB in size
by default and is mapped into the targeted application as well as into the fuzzer’s vir-
tual memory. This buffer, also termed AFL-Bitmap, stores all occurring state transitions
as a hashed tuple of two edge identifiers. Those identifiers are inserted by the AFL gcc

*https://lcamtuf.blogspot.de/2015/01/afl-fuzz-making-up-grammar-with.html

https://lcamtuf.blogspot.de/2015/01/afl-fuzz-making-up-grammar-with.html

2.1. AMERICAN FUZZY LOP 9

or clang compiler wrapper afl-gcc or afl-clang after any x86-64 conditional and un-
conditional jmp instruction during compile-time and they identify the edge of any basic
block (see listing 2.1 and 2.2).

Listing 2.1 Disassembly of an unmodi-
fied basic block

/* ... */
je <LOCATION>

/* ... */

Listing 2.2 Disassembly of a modified
basic block

/* ... */
je <LOCATION>

/* AFL INSTRUMENTATION */
leaq -(128+24)(%rsp), %rsp
movq %rdx, 0(%rsp)
movq %rcx, 8(%rsp)
movq %rax, 16(%rsp)
movq <COMPILE_TIME_RANDOM>, %rcx
call __afl_maybe_log
movq 16(%rsp), %rax
movq 16(%rsp), %rcx
movq 16(%rsp), %rdx
leaq (128+24)(%rsp), %rsp

/* ... */

The following hash function code (listing 2.3) is part of the __afl_may_log() function
and is executed after each instrumented edge is hit. The hashing is applied on the
shared bitmap buffer:

Listing 2.3 AFL Instrumentation

1: cur_location = <COMPILE_TIME_RANDOM>;

2: shared_mem[cur_location ^ prev_location]++;

3: prev_location = cur_location >> 1;

Due to the selected hash function, AFL is able to distinguish the state transition di-
rection. If, for instance, the current_location and prev_location is swapped, the hash
function will generate a different value, due to the shift operation in line 3. Moreover,
AFL is also able to detect loops and other frequently executed code areas owning to
the increment operation in line 2. Therefore, any additional loop iteration will thus be
detected as a new state transition. To avoid potential path explosions, AFL uses a buck-

10 CHAPTER 2. BACKGROUND

eting approach. Only if the number of iterations matches any 2N bucket value (except
for N < 0 ∨ N > 8), the state transitions will be considered as new path. The selected
2N handling is based on a fast implementation of a bit-masking approach for byte com-
parisons of AFL bitmap values, whereas only one bit in the bit-mask is set at the same
time. The result of this approach is that only 8 possible state transitions per loop are
recognized compared to 28 − 1 possible paths.

Due to the limited size of the bitmap buffer, hash collisions become possible. This is
especially true for larger programs. In such case, the bitmap buffer should be enlarged
by the user to deal with more complex applications.

2.1.5 Fork-Server

By default, AFL calls execve() per fuzzing iteration to launch the target application.
This produces high CPU load on the system, since the OS and the dynamic loader have
to load the application, dynamically link all shared libraries and repeatedly execute the
same initial code path of the application.

However, AFL deals with this issue and avoids unnecessary load by using the fork
syscall instead. Most POSIX-conform OS implement the fork syscall Copy-on-Write
(CoW)-aware. This means, if fork() was executed, the OS just copies the parental page
table and reuses all pages as long as no write-attempt is occurred. In case of a write-
attempt, the OS will copy only the requested page instead of all related pages at once.
AFL exploits this functionality by copy and eventually launch the targeted applica-
tion via fork(). This improves significantly the fuzzing performance opposed to the
execve() approach.

However, the user has to include an initial call to the AFL-forkserver code in the tar-
geted application. Since the position of the forkserver represents the new entrypoint,
the less frequent code has to be executed from within the new entrypoint, the more
performance will be improved.

2.1.6 Runtime Complexity

In most cases, the runtime complexity of AFL is much lower compared to other fuzzers.
This is because fuzzing without any feedback coverage or control-flow analysis heavily
depends on brute-force methods. For instance, the condition in listing 2.4 is hard to

2.1. AMERICAN FUZZY LOP 11

satisfy for blackbox-fuzzers, since the comparison of three different bytes at the same
time would yield over 224 combinations. In contrast, AFL will find the crashing input in
3 · 28 guesses at worst. This is due to the runtime-feedback, that breaks the exponential
blackbox problem into a linear problem.

Listing 2.4 Linear AFL Problem
1: if (input[0] == ’A’ && input[1] == ’F’ && input[2] == ’L’)
2: crash();

Nevertheless, the AFL approach has some scope-depended disadvantages. For exam-
ple, there are several known condition patterns (see listing 2.5) that are hard to satisfy
for feedback-driven fuzzers, but simple to solve by for concolic execution [Ste+16].

Listing 2.5 Difficult AFL Problem
1: if (input == 0xaabbccdd0badc0de)
2: crash();

2.1.7 Challenges of Applying AFL on Kernelspace

There are several challenges which must be solved in order to apply the AFL fuzzing
engine on supervisor mode code. For instance, it is much harder to gather dynamic
branch information during runtime. Several approaches have been proposed, but most
of them require the ability to recompile the targeted OS [kcov] or would result in poor
runtime performance*†. Moreover, a different crash detection and handling mechanism
is required, since the AFL user mode approach would not work on kernel level. Since
kernel misbehavior results in a terminated state, the fuzzer must either run in another
independent domain than the target OS and reset the initial kernel state or ensure that
the fuzzer state is saved even if the OS crashes. The first case also requires the ability
to detect kernel misbehavior. Finally, the fuzzer has to deal with non-deterministic
runtime information such as the occurrence of an interrupt or trap handler during the
fuzzing process. Otherwise, the the results in the AFL bitmap would be clobbered by
“noise”.

*According to Jesse Hertz and Tim Newsham the QEMU TCG approach would result in 1–10 ex-
ec/sec single threaded performance running on an unspecified quadcore CPU [HN16a].

†Mateusz Jurczyk describes a slowdown of 20-50x time by using Bochs to gather branch information
[Jur16].

12 CHAPTER 2. BACKGROUND

2.2 Intel VT-x

Virtualization has become an indispensable technology in many computing domains
during the last ten years. The kernel fuzzing approach introduced in this thesis relies
on modern x86-64 hardware virtualization technology. Thus, this section will provide
a brief overview about the Intel proposed hardware virtualization technology called
Intel VT-x.

2.2.1 Terminology

Virtualization is the process of providing virtual resources separated from physical re-
sources to run arbitrary software within a virtualized context.

The virtualization role model is divided into two components: the VMM and the Vir-
tual Machine (VM). The VMM, also termed hypervisor or host, is a privileged software
that has full control over the physical CPU and provides restricted access to physical
resources to virtualized guests. The VM, also termed guest, is a software that is trans-
parently executed within the virtualized context provided by the VMM.

The term “virtualization” is often used to refer to “full virtualization”. Full virtual-
ization means that software, which was originally designed to run on physical hard-
ware, is able to run within the virtualization context without any modifications needed.
Popek and Goldberg specify this term even further [PG74]:

1. In contrast to full system emulation, a virtual machine has to execute as much
as possible directly on the CPU without any intervention (except for a subset of
hard-to-virtualize instructions).

2. Software that runs within the virtualized context has no control or access to host
physical resources, except for assigned virtual resources.

3. Software has to behave exactly as it would on real hardware.

2.2.2 General

Intel VT-x is an extension of IA-32, which provides support for hardware assisted vir-
tualization. Prior to hardware supported virtualization, [RI00] described the x86 archi-
tecture to be partially or even fully non-virtualizable. They stated that “seventeen [x86]

2.2. INTEL VT-X 13

instructions did not meet virtualization requirements because they were sensitive and
unprivileged”.

This has changed with the advent of new hypervisors using a technology termed Binary
Translation (BT). Instead of modifying the OS to fit the x86 virtualization requirements
before execution (known as paravirtualization), BT modifies code during runtime on
the fly. This does not affect the execution of user mode code, but it does impact the ex-
ecution of the guest kernel mode. In order to deal with non-virtualizable instructions,
which in general are privileged instructions running in supervisor mode, BT replaces
those during runtime with other proxy-instructions to achieve practically the same ef-
fect without breaking out of the virtualized context. BT comes in return of efficiency
(at least in ring 0 execution) and requires a certain amount of implementation complex-
ity. To provide a further layout of isolation, BT-based hypervisors typically executes
virtualized ring 0 code in between of ring 0 (kernel mode) and ring 3 (user mode).

Usermode

Guest Kernel mode

Host Kernelmode

Ring 3

Ring 1

Ring 0

CPU

VMM
(VMX root)

Guest Usermode
(VMX non-root)

Guest Kernelmode
(VMX non-root)

CPU

Ring 3

Ring 0

BT-based Virtualization Hardware Virtualization (Intel VT-x)

Ring -1

direct execution in
Ring0, trap via VM-Exit

direct execution on
host CPU

handle VM-Exit
reason

direct execution
on host CPU

binary translation of
unvirtualizable instructions

handle guest
unvirtualizable request

Figure 2.1: Binary Translation and Intel VT-x, figure based on [VMw08]

To minimize such efforts, Intel and AMD have released specific IA-32 extensions to
circumvent the required runtime observation of the kernel control-flow. Instead, if an
non-virtualizable instruction is executed in a virtualized context, the CPU will inde-
pendently trap into the VMM. Those events are termed VM-Exit events and delegated
to the VMM, which handles the request by emulating the required instruction for the
virtualized guest.

14 CHAPTER 2. BACKGROUND

In comparison, hardware virtualization is making the implementation of full virtual-
ization less complex and is achieving higher virtualization performance compared to
virtualization based on Binary Translation*.

Nevertheless, hardware assisted virtualization has become the state-of-the-art virtual-
ization technique, among others, because Long Mode virtualization on Intel CPUs is
only efficiently possible by using VT-x due to technical limitations [VMw09]. Further-
more, hardware assisted virtualization is often used in combination with paravirtual-
ization device- and driver-components (e.g. virtio [Rus08]) to achieve nearly native
performance in common use-cases (e.g. networking).

2.2.3 VMX Operation

To provide full hardware assisted virtualization support, Intel VT-x adds two addi-
tional execution modes upon to the known Current Privilege Level (CPL) model [Inta].
These modes are termed Virtual Machine Extension (VMX) root and VMX non-root op-
erations and must explicitly be enabled by software. If VMX operations are disabled,
the CPU is in the VMX Off-state and behaves as usual. Otherwise, the CPU is in the
VMX On-state and either in VMX root or VMX non-root operation. Typically, the VMM
code is executed within VMX root operation and guest code within VMX non-root op-
eration. Since VMX operations run upon the CPL model, guest software can run in the
indented CPL domain without any modifications.

2.2.4 VMX Transitions

To transit from VMX Off-state to VMX root operation, software executes VMXON instruc-
tion and conversely executes VMXOFF instruction to switch to VMX Off. VM Entry events
are transitions from VMX root to VMX non-root operation. A VM Entry event is initi-
ated by executing VMLAUNCH instruction in VMX root operation. To resume an already
launched VM, the VMM has to execute VMRESUME instruction instead.

*Except for first generation implementations of Intel VT-x and AMD SVM (Pacifica) [VMw08].

2.2. INTEL VT-X 15

VMX Off VMX root VMX non-root

VMX On

VMXOFF

VMXON VM Entry

VM Exit

Figure 2.2: VMX Transitions, figure taken from [Cha15]

Since VMX non-root operation is a restricted context, a VM Exit event occurs in re-
sponse to several reasons and initiates a transition to VMX root operation. VM Exit
events are the result of the attempting execution of certain restricted instructions, an ex-
pired VMX-preemption timer or attempting access to restricted or emulated resources
such as virtual device memory.

2.2.5 Virtual Machine Control Structures

To create, launch and execute a VM, the VMM has to prepare a Virtual Machine Control
Structure (VMCS) [Intb] beforehand. A VMCS contains all essential information about
the VM and the current state. The VMCS is especially used to facilitate the VMX Entry
and the VMX Exit events and specify the guest execution behavior in VMX non-root
operation. Only one VMCS can be used within the same logical CPU at the same time.
The VMCS data consists of six logical groups and is structured as follows:

Guest-state area:
The guest state is stored in this area after the CPU transits from VMX non-root
to VMX root operation (VM Exit event). Accordingly, the state is loaded if a VM
Entry transition is initiated. This area stores, among others, all mutable control
and debug register values (such as CR0, CR3, CR4 and DR7), certain registers (RSP,
RIP and RFLAGS) and segment registers (SS, CS, DS, ES, FS and GS). Other General
Purpose Register (GPR) has to be saved immediately after the VM Exit transition
by the VMM in VMX root operation.

Host-state area:
This area represents the counterpart of the Guest-state area and stores the host
state after the CPU switches from VMX root to VMX non-root operation (VM en-
try). Accordingly, the state is loaded if a VM exit transition occurs. Obviously, this
area contains all host values that might get clobbered by VMX non-root execution.

16 CHAPTER 2. BACKGROUND

VM-execution control fields:
The control fields for VM execution specify the VMX non-root behavior. This
includes the option to enable the VMX-preemption timer, the option to raise a VM
Exit event on the execution of certain instructions (e.g. hlt) or on modifications
of the CR3 register*. Moreover, by modifying this area, software is also able to
activate VT-x features such as Extended Page Tables (EPT).

VM-exit control fields:
The VM Exit Control fields area specifies the behavior of the CPU after a VM Exit
event occurs. This covers configurable options such as the predefined automatic
load of certain Model Specific Register (MSR) values directly after a VM Exit tran-
sition.

VM-entry control fields:
The VM Entry Control fields area specifies the behavior of the CPU after a VM
Entry event occurs. This area is the counter part of VM Exit control fields area
and it also offers an equivalent option-set.

VM-exit information fields:
This field stores the VM exit transition information and reasons. Generally, after a
VM Exit event occurs, the VMM has to consult this area to get the VM Exit reason
to react appropriately.

To configure and set a VMCS, certain new instructions have been introduced by Intel
to serve this purpose. To load an already prepared VMCS, VMX provides the VMPTRLD

instruction which sets the targeted VMCS as current. The VMM is also able to read
and write certain values of the current VMCS by executing the VMREAD instruction or the
VMWRITE instruction.

*On x86-64 systems, the CR3 register stores the value of the Page Map Level 4 Table (PML4T) in Long
Mode.

2.3. KVM / QEMU 17

2.3 KVM / QEMU

Kernel-based Virtual Machine (KVM) is a Linux kernel subsystem for virtualization. In
contrast to VMware, KVM only supports full virtualization based on hardware-assisted
virtualization extension such as Intel VT-x (see 2.2) and AMD SVM. This section de-
scribes the fundamental concepts of KVM, Quick Emulator (QEMU) and provides a
brief overview of the interaction between both components.

2.3.1 General

KVM is a Linux kernel subsystem which exposes hardware virtualization features to
the userspace. It is shipped in form of multiple kernel modules (kvm.ko and kvm_intel.ko

or kvm_amd.ko on x86 systems) and available since Linux 2.6.20. Since hardware-assisted
virtualization extensions require supervisor privileges to operate, the kernel has to ini-
tiate VM preparations and eventually launch the VM. KVM handles the process of VMX
transitions and exposes virtualization abilities via an standardized interface to the user
mode. Over time, KVM has become the state-of-the-art hypervisor for Linux systems.
Due to the kernel integration, KVM does not only provide good virtualization per-
formance, but also enables the implementation of more complex features within the
kernelspace like KSM [AEW09] and virto paravirtualized devices.

QEMU is a GPLv3 licensed CPU and hardware emulator for almost all common used
microarchitectures. The emulation backend is based on dynamic binary translation and
provides consequently high performance. In addition to CPU-emulation, QEMU is able
to emulate various system components of the desired emulation environment, such
as network interfaces, CD-ROM drives, hard-drives, various PCI-devices and graphic
adapters. Furthermore, QEMU provides multiple high level capabilities such as TUN
network tunneling and CoW-aware virtual hard-disk images.

In combination with KVM, QEMU becomes a hosted-hypervisor which is able to exe-
cute code via KVM at nearly native performance, whereas QEMU deals with the essen-
tial emulation of hardware components.

18 CHAPTER 2. BACKGROUND

2.3.2 KVM Architecture

KVM exposes all features via a common Unix device node (typically mapped to /dev/kvm).
This device node is accessible via an extensive ioctl-interface*. In addition to the com-
mon kernel- and user-mode, KVM adds another mode termed guest mode [Kiv+07]. In
general, the KVM guest mode corresponds to the VMX non-root operation. This mode
is maintained and entered by KVM and thus only accessible via ioctl-commands from
within the user mode. Any VM has a configurable number of virtual CPUs (vCPUs)
and its own (virtual) physical memory that is shared with several pages of the virtual
memory space associated with the instructing user mode process. KVM does not sched-
ule guest code by its own. Instead, the corresponding user mode process is accountable
to repeatedly acquire KVM for guest mode execution. On VM Exit events, KVM either
handles the exit reason in kernel mode or requests the user mode process to handle it †.

2.3.3 KVM API

To interact with KVM from the user mode, an application must obtain a file descrip-
tor of the device node /dev/kvm and communicate with this file descriptor via ioctl-
commands. Via the KVM_CREATE_VM ioctl-request, KVM creates a new VM and provides
a file descriptor referenced to this VM. By another ioctl-command, the user mode pro-
cess can acquire a vCPU to the associated VM. For this purpose, the KVM_CREATE_VCPU

ioctl-command is used. Afterwards, KVM provides another specific file descriptor ref-
erenced to the newly created vCPU. To enter guest mode on the vCPU, the user mode
process has to invoke the KVM_RUN ioctl-command. Listing 2.6 illustrates the common
process of VM creation, vCPU acquiring and VM launching.

*For further details about the KVM ioctl-interface please see: https://kernel.org/doc/
Documentation/virtual/kvm/api.txt

†Usually seen within the QEMU device emulation on I/O requests.

https://kernel.org/doc/Documentation/virtual/kvm/api.txt
https://kernel.org/doc/Documentation/virtual/kvm/api.txt

2.3. KVM / QEMU 19

Listing 2.6 KVM API interaction
1: kvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
2: vmfd = ioctl(kvm, KVM_CREATE_VM, NULL);
3: /* allocate memory region... */
4: vcpufd = ioctl(vmfd, KVM_CREATE_VCPU, NULL);
5: /* prepare vCPU registers... */
6: while (1) {
7: exit_reason = ioctl(vcpufd, KVM_RUN, NULL);
8: /* ... handle delegated exit reason */
9: }

20 CHAPTER 2. BACKGROUND

2.4 Intel Processor Trace

With the fifth generation of Intel Core processors (Broadwell architecture), Intel has
introduced a new processor feature, Intel Processor Trace (Intel PT), to provide execution
and branch tracing information directly by the processor. Unlike other branch tracing
technologies such as Intel Last Branch Record (LBR), the size of the output buffer is no
longer strictly limited by hardware. In theory, Intel PT is capable of long-term tracing.
In practice, this is only limited by the size of the buffer of the output target (e.g. the main
memory or an external PT-aware device). If the output target is emptied repeatedly and
timely, buffer overruns will be circumvented and the trace session duration becomes
unlimited. The processor’s output format is packet-oriented and separated into two
different types: general execution information and control-flow information packets.
To reconstruct the control-flow from within the trace data, an Intel PT software decoder
as well as the software that was executed at the time of the tracing is needed.

2.4.1 Execution Information Packets

Intel PT produces a set of miscellaneous packets describing various events and states
of the CPU during trace sessions. This includes the following packet types:

Packet Stream Boundary (PSB):
PSB packets indicate the boundary of an Intel PT trace sample and help an Intel PT
software decoder to find the beginning of the actual trace data. PSBs are included
automatically by the CPU in the Intel PT data stream and no option is provided
to deactivate the generation of PSBs.

Time-Stamp Counter (TSC):
TSC packets store the value of the software accessible time-stamp counter of the
associated CPU at the moment during record. The generation of this packet type
can be deactivated by modifying the IA32_RTIT_CTL.TSCEn MSR field. This packet
type was not used during this thesis.

Core Bus Ratio (CBR):
CBR packet contains the value of the bus clock ratio. This packet type is not
relevant in the field of flow reconstruction and was not used during this thesis.
Unfortunately, this packet type is not configurable and it’s generation cannot be
deactivated. Each occurrence of this packet in the trace data can safely be ignored.

2.4. INTEL PROCESSOR TRACE 21

CoFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ, JECXZ, JRCXZ, JE, JG, JGE, JL,
JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE,
JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE,
LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2)

Near Ret RET (C3, C2 xx)

Far Transfers INT3, INTn, INTO, IRET, IRETD, IRETQ,
JMP (EA xx, FF /5), CALL (9A xx, FF /3),
RET (CB, CA xx), SYSCALL, SYSRET, SYSENTER, SYSEXIT,
VMLAUNCH, VMRESUME

Table 2.1: CoFI Types ([Intc], Table 36-1, CoFI Type for Branch Instructions)

Overflow (OVF):
As already mentioned, it is possible that the configured output target might be
overrun during runtime. In such case, an OVF packet is generated by the CPU to
indicate to the Intel PT software decoder a potential loss of packets.

Paging Information Packet (PIP):
PIPs indicate the modification of the CR3 register during runtime. As a result, the
Intel PT software decoder is able to comprehend a paging transition post-mortem.
Typically, a paging transition occurs if another user mode process obtains CPU
time by the scheduler and thus the virtual memory address space is switched.

2.4.2 Flow Information Packets

Intel PT may also produce various types of control flow related packet types by the pro-
cessor during runtime. A software decoder is able to reconstruct the exact control flow
by decoding those packets and by putting them into correlation with the associated
program. Intel describes five types of control-flow affecting instructions called Change
of Flow Instructions (CoFI) (see Table 2.1). The execution of different CoFI types result
in different sequences of Intel PT flow information packets. Fifth generation Intel Core
CPUs provide the following set of flow information related packet types:

Taken-Not-Taken (TNT):
If the processor executes any type of conditional jump, the former decision whether

22 CHAPTER 2. BACKGROUND

this jump was taken or not will produce a TNT packet containing the value of the
taken direction. Those packets are essential for the reconstruction of the exact
control flow.

Target IP (TIP):
If the processor executes a jump or transfer instruction, which depends on a value
in memory or register, the decoder will not be able to recover the control flow.
Therefore, the processor produces a TIP packet on the execution of an indirect
branch, near ret and far transfer type instructions. Those TIP packets store the
corresponding target IP that was executed by the processor after the transfer /
jump occurred. If a special CPU feature called RET compression is deactivated, the
CPU will include TIP packets even if ret instructions are executed. Otherwise, the
software decoder is forced to track the state of the current call stack. To minimize
complexity, this feature is explicitly deactivated in kAFL. In addition to common
TIP packets, there are two further and more specific TIP packet types. These in-
clude TIP.PGE packets (Packet Generation Enabled) to indicate the first TIP after
tracing was enabled and TIP.PGD packets (Packet Generation Disabled) to indicate
the last traced packet before tracing was eventually disabled.

Flow Update Packets (FUP)
Another case where the processor must produce a hint packet for the software
decoder are asynchronous events such as any type of interrupts or traps. Those
events are recorded as FUPs and usually followed by a TIP to indicate the follow-
ing instruction.

MODE:
If a processor mode switch occurs (e.g. from Protected Mode to Long Mode), the
processor also notifies such an event in form of a MODE packet.

2.4.3 Intel PT Software Decoder

In order to reconstruct a control flow from Intel PT’s output data, the flow informa-
tion data must first be decoded. Intel PT does not provide a complete list of executed
instruction pointers. Instead, Intel PT generates as little information as necessary to
reduce the amount of data produced by the processor. Consequently, the Intel PT soft-
ware decoder does not only require the control flow information data to reconstruct the
control flow, but also needs the program that was executed during tracing. If the pro-
gram is modified during runtime, as often done by Just-in-Time (JIT) compilers in user-

2.4. INTEL PROCESSOR TRACE 23

and kernel mode, the decoder will not be able to exactly restore the runtime control
flow. To bypass this limitation, decoders will need information on all applied modifi-
cations of the program instead of an ordinary memory dump or the executable file.

Listings 2.8 and 2.7 illustrate an example of an Intel PT sample and the associated pro-
gram*. Listing 2.8 is arranged according to the causing instruction, whereas the value
within the brackets indicates the chronological order†.

Listing 2.7 Disassembly of a x86 pro-
gram running in Real Mode

0x1000 mov dx, 0x3f8
0x1003 add al, bl
0x1005 add al, 0x30
0x1007 nop
0x1008 mov al, 0xa
0x100a nop
0x100b jmp loc_1011 // (EA XX)
0x1010 hlt
0x1011 mov al, 0xa
0x1013 jae loc_1016
0x1015 nop
0x1016 nop
0x1017 jmp loc_1010 // (EA XX)

Listing 2.8 Decoded Intel PT Sample
(Flow Information Packets only)

(1) TIP.PGE 0x1000

(2) TIP 0x1011
(5) TIP.PGD

(3) TNT (Taken)

(4) TIP 0x1010

2.4.4 Trace Filtering

To limit the amount of generated trace data, Intel PT provides multiple options for
runtime filtering:

IP-Filtering:
Depending on the processor, it might be possible to configure multiple instruc-
tion pointer filter ranges. In general, those filter ranges only affect virtual ad-
dresses if paging is enabled. To enable IP filter ranges, software has to modify
IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSR, whereas n is a placeholder and
represents the identifier of the given IP filter‡. Software can configure those IP

*This program was originally taken from https://lwn.net/Articles/658511/. However, this program
was slightly adapted to generate more flow information packets.

†This is a simplified trace example. Unfortunately, TNT packets might be cached by the CPU during
tracing and thus the resulting order does not necessarily represents the chronological order.

‡According to the Intel documentation, 4 was the maximal number of configurable IP filter ranges at
the time of writing.

https://lwn.net/Articles/658511/

24 CHAPTER 2. BACKGROUND

filter ranges as opt-out ranges as well as opt-in ranges.

CPL-Filtering:
In accordance to the CPL-filtering, it is possible to opt-out the entire activity of the
user mode (CPL > 0) or kernel mode (CPL = 0) from each other. kAFL utilizes
this filter option to limit tracing explicitly to kernel mode execution.

CR3-Filtering:
In most cases the focus of tracing is not the whole operating system within all user
mode processes. To limit trace generation to one specific virtual memory address
space, software can use the CR3 filter. Thus, Intel PT will only produce trace data
if the CR3 value matches the configured value in IA32_RTIT_CR3_MATCH MSR.

2.4.5 Table of Physical Addresses

Intel PT supports various configurable target domains for output data. According to
the Intel documentation, the following options are given:

1. Single Range Output

2. Platform-specific Trace Transport System

3. Table of Physical Addresses (ToPA)

0234569101112 1

Output Region Base Physical Address

63 MAXPHYADDR-1

9:6 Size
4: STOP
2 : INT
0 : END Reseverd

Figure 2.3: ToPA Entry Structure, figure taken from [Intc]

This thesis focuses on the ToPA mechanism only. Other methods are not addressed
further. The Table of Physical Addresses is a mechanism to concatenate multiple dis-
tributed memory chunks together to an unified contiguous output region. This mech-
anism is based on a linked list of ToPA tables. Every ToPA Table contains multiple ToPA

2.4. INTEL PROCESSOR TRACE 25

Entries that contain the physical address of the associated memory chunk, termed ToPA
Region, and the table itself is stored in physical memory. Each ToPA entry is specifically
encoded (see Figure 2.3) and contains a physical address, a size specifier for the referred
memory chunk in physical memory and multiple type bits. Those type bits specify the
behavior on access of the ToPA Entry. This includes the following options:

STOP Entry:
If the linked output region is filled, tracing will be disabled by hardware. The last
ToPA entry must configure this option.

INT Entry:
If the associated ToPA output region is filled, a notifying interrupt will be raised
and the trace generation will be continued in the next ToPA output region.

END Entry:
This entry is necessary for the ToPA structure to indicate the last entry within this
table. Therefore, this ToPA entry points to the next ToPA table instead of a ToPA
output region.

26 CHAPTER 2. BACKGROUND

The following figure illustrates a sample ToPA configuration with to distributed ToPA
tables (Table A and Table B) and multiple ToPA output regions:

OutputRegionY

OutRegionX

ToPA Table B

IA32_RTIT_OUTPUT_BASE.BasePhysAddr

Physical Memory
0xffffffffff

0x0

TableBaseB
OutputBaseY
OutputBaseX

END = 1
4K
64K

ToPA Table A

END = 1

IA32_RTIT_OUTPUT_MASK_PTRS.TableOffset

IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

Figure 2.4: Table of Physical Addresses, figure taken from [Intc]

As shown in figure 2.4, IA32_RTIT_OUTPUT_BASE stores the physical base address of the
current ToPA table. The IA32_RTIT_OUTPUT_MASK MSR stores the offset value of the table
(TableOffset) as well as the value for the current ToPA output region offset (OutputOffset).
According to the Intel documentation, these values are only visible if tracing is dis-
abled.

If the INT bit is set in a ToPA entry, the processor will raise a Local Vector Table Perfor-
mance Monitor Interrupt (LVT PMI) if the corresponding ToPA output region is filled
and the interrupt was enabled by software. This mechanism is useful to notify software
about an occurred or upcoming buffer overrun. Since the LVT PMI is not “precise”
according to the Intel documentation, software must be aware of this peculiarity. This
means, software has to ensure that a backup output region following after the INT ToPA
entry is prepared and large enough to store upcoming trace data before the belated PMI
is raised.

2.4. INTEL PROCESSOR TRACE 27

2.4.6 VMX Tracing

Initially, Intel PT was unable to trace VMX non-root operations and thus was not suit-
able for VM tracing. Approximately since the sixth generation of Intel Core processors,
this limitation is gone and the latest processor models support this capability. To ensure
that the processor is capable of VMX non-root tracing, the driver must consult the value
of IA32_VMX_MISC MSR during runtime and check if the 14th bit is set. Consequently, if
this bit is not set, the processor does not support VMX non-root tracing. Unfortunately,
Intel does not provide any further information about which processor does support
VMX non-root tracing.

28 CHAPTER 2. BACKGROUND

Chapter 3

Design and Implementation

kernel AFL (kAFL) is a prototype for hardware-accelerated kernel fuzzing developed
during this thesis. This chapter describes kAFL’s design and implementation aspects
and is structured as follows:

In chapter 3.1 the fuzzer engine is described and insights about the first instrumentation-
based approach of kAFL and the inter-VM communication of virtualized target OSs
are given. Chapter 3.2 covers the developed KVM extension driver called vmx_pt. The
vmx_pt KVM extension integrates support for Intel PT tracing for vCPUs. In combina-
tion with a developed QEMU extension, which is introduced in chapter ??, this feature
is also accessible via user mode and can be used within common virtualization use-
cases. Finally, in chapter 3.4, a novel Intel PT decoder engine is described, which is
directly integrated in QEMU to deal with vmx_pt provided trace data in an automated
and highly efficient fashion.

By combining all components, kAFL becomes a hardware-accelerated x86-64 supervi-
sor mode fuzzer that leverages modern virtualization techniques and provides much
better performance compared to other proposed coverage-guided kernel fuzzers. Be-
sides that, kAFL does not require any recompilation of the target OS. Instead, the cur-
rent version of kAFL requires only the usage of an OS specific kernel driver to interact
with kAFL via an inter-VM bridge.

29

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.1 kAFL Fuzzer

Initially, the objective of this project was to extend the already developed USB fuzzing
framework vUSBf [SSS14]. This includes support for feedback-capabilities inspired by
AFL and the ability to fuzz USB device drivers of various OS coverage-guided. Even-
tually, this objective was discarded later during development and instead a general-
purpose feedback-driven kernel fuzzer was developed. kAFL currently does not sup-
port fuzzing of USB drivers but this feature might be implemented in later versions.
Nevertheless, most of the KVM and QEMU specific code of vUSBf was reused. kAFL
is a project mostly written in Python. Besides that, all fuzzing techniques of AFL were
ported to kAFL.

Figure 3.1: kAFL Screenshot

During this project two different approaches to gain coverage-feedback were imple-
mented. This includes an instrumentation-based approach as well as a novel Intel PT
based approach. This section covers only the instrumentation-based approach. The
more sophisticated Intel PT approach is discussed later in section 3.2, section 3.3 and
section 3.4. Because kAFL initially does not utilize the Intel PT provided capabilities,
it was only capable to fuzz OSs which can be recompiled to integrate compile-time in-
strumentations as already demonstrated by AFL. A proof-of-concept implementation
for this approach was developed for Linux x86-64.

3.1. KAFL FUZZER 31

3.1.1 Architecture

The kAFL fuzzer consist of multiple components, whereby each offers a specific func-
tionality. Figure 3.2 illustrates the interaction between all components. Note that the
number of Slave Processes is fully scalable:

Fuzzer Core Coverage
Core

kAFL Slave

QEMU

Patched Kernel

(1.1) requesting next payload

(3) sending
 result packet

 kAFL Device
kAFL Driver

Display
Process

(4) submitting
state change

(1.2) providing new payload

(4) submitting
state change

(2.1) requesting
 task packet (2.2) sending

 task packet

Figure 3.2: kAFL Architecture

Fuzzer Core:
The Fuzzer Core of kAFL represents the fuzzer itself. This component generates
new input in reply of request from Slave Processes. To generate new mutations,
kAFL utilizes the same fuzzing techniques as AFL (see chapter 2.1). The strate-
gies are reimplemented in Python, but code in frequent executed sections is based
on native calls to avoid performance-losses. If the Fuzzer Core has applied all
fuzzing techniques on the current input data, the Fuzzer Core will request the in-
put data for the next iteration from the Coverage Core process. The Display Process
is notified periodically about the internal state of the Fuzzer Core. Therefore, the
Fuzzer Core sends the state data to the Display Process. This includes the current
fuzzing stage, the current progress and the total number of applied mutations.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

Coverage Core:
The Coverage Core receives AFL bitmaps from the Slave Processes after a mu-
tated input is applied to the target. Based on those information, the Coverage
Core is able to measure progress during the fuzzing process and determines the
next preferred input mutation. The Coverage Core also provides the next deter-
mined input if the Fuzzer Core consults it. On internal state changes the Display
Process is notified as well. This includes the discovery of a new detected path, an
occurred crash or an expired timeout.

Slave Process:
The target domain of this fuzzer is a virtualized OS running inside QEMU / KVM.
Therefore, kAFL has to utilize QEMU to start and manage those VMs. Due to the
usage of KVM, the fuzzer provides a nearly native performance. The commu-
nication between the Slave Process and the OS itself is achieved via an inter-VM
communication bridge, which is based on the kAFL guest device and the kAFL guest
driver (see chapter 3.1.3) of the OS. The synchronization and interaction via the
inter-VM bridge is managed by the Slave Process. A Slave Process interacts with
the Fuzzer Core to request and receive new input data. Furthermore, the Slave
Process sends resulting AFL bitmap to the Coverage Core.

Display Process:
Due to the distributed architecture, the information is distributed between the
Fuzzer Core and the Coverage Core. This results in an loss of information be-
tween each component, which does not affect the effectivity of the fuzzer. Unfor-
tunately, the user interface highly depends on this set of information. Therefore,
both components submit state changes to the Display Process. Using the provided
state changes, the Display Process is able to output this information in regular
intervals depending on the configuration of kAFL.

3.1. KAFL FUZZER 33

3.1.2 Compiler Wrapper

The first implementation is fundamentally based on compile-time instrumentation to
track branch transitions. To serve this purpose, an own GNU gcc wrapper was devel-
oped. The kAFL-compiler wrapper is inspired by and works mostly the same way as
the afl-gcc compiler. The compiler wrapper intercepts the compile process of GNU
gcc and modifies the intermediate assembly produced by GNU gcc. The insertion of
x86-64 instrumentation code is performed before GNU gcc eventually calls GNU as to
translate the intermediate x86-64 assembly to binary.

The wrapper includes the following instrumentation after each basic block: The instru-
mentation code saves all GPRs that might get clobbered during execution. This also
includes the EFLAGS register. The EFLAGS register stores status, control and systems bits.
Especially the status category is relevant, since this category includes the Carry Flag,
Parity Flag, Adjust Flag, Zero Flag, Sign Flag and Overflow Flag. Bits of other categories,
especially of the control or system category, will not be clobbered during execution, ex-
cept if those bits are intentionally modified by the instrumentation code - which is not
the case. Therefore, this approach is suitable for kernel mode.

Listing 3.1 kAFL Linux x86-64 instrumentation assembly

1: leaq -72(%rsp), %rsp // resize stack

2: /* ... */ // save certain GPRs on stack

3: seto %al // fast pushf

4: lahf // fast pushf

5: movq %rax, 64(%rsp) // fast pushf (save on stack)

6: movq $<value>, %rdi // compile-time random

7: call kafl_logger

8: movq 64(%rsp), %rax // fast popf (load from stack)

9: addb $127, %al // fast popf

10: sahf // fast popf

11: /* ... */ // restore certain GPRs from stack

12: leaq 72(%rsp), %rsp // restore previous stack pointer

Similar to AFL, the EFLAGS register is not saved and restored by using pushf and popf.
Instead, the instrumentation code uses the more efficient sahf and lahf approach, since
pushf and popf are relatively slow compared to the other approach. This is due to a

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

quirk of the x86 architecture* and since this instruction saves mostly the entire content
of EFLAGS, which is superfluous for our approach. Additionally, the OVF bit of the EFLAGS

register is saved by using the seto %ah and addb $128, %ah approach. As already men-
tioned, other EFLAGS bits left untouched and therefore are not saved.

Unlike AFL, the call instruction does not point to a function, which is part of the instru-
mentation code and is included by the compiler wrapper. Instead, the instrumentation
code calls a function, which is either part of the kernel core or part of a kernel module.
This code is used for the inter-VM communication and must be explicitly included to
the kernel source or, if included within a kernel module, be loaded during runtime. The
use of function kafl_logger() is described in more detail in section 3.1.4.

Depending on the targeted kernel code to fuzz, it is required to integrate kafl_logger()

into the kernel core, if the targeted code is executed even before the kernel module
loader is able to load any kernel modules (e.g. file system driver). Otherwise, the code
can be outsourced to a kernel module. In such case, the targeted kernel module will
require to load the kernel module containing kafl_logger() beforehand.

3.1.3 kAFL Guest Device

Kernel Fuzzing can be divided into two different categories: external fuzzing via inter-
faces such as network devices or USB and internal fuzzing via a user mode application
executing various syscalls. As already mentioned, kAFL currently only supports in-
ternal fuzzing and uses an inter-VM communication bridge for synchronization and
communication with the fuzzing user mode application. To provide inter-vm commu-
nication, a special QEMU device was developed, that emulates a virtual PCI-device.
This device is called kAFL guest device.

The kAFL guest device is based on the QEMU ivshmem (inter VM shared memory) de-
vice implementation [Mac11]. This QEMU device emulates a virtual PCI-device with
several PCI memory regions, called PCI Base Address Registers (BAR), and a Memory-
mapped I/O (MMIO) area. The kAFL guest device utilizes multiple PCI-BARs for
shared-memory capabilities within the host and the virtualized guest system. By de-
fault, kAFL emulates the following PCI-BARs:

*https://reviews.llvm.org/D6629

https://reviews.llvm.org/D6629

3.1. KAFL FUZZER 35

Payload PCI-BAR (128 KB):
The Payload PCI-BAR stores the payload, which is used by the fuzzing applica-
tion to be injected via syscalls into the targeted OS. This area is modified by the
host after each iteration. To avoid race conditional memory accesses between the
kAFL fuzzer and the fuzzing application inside the host, inter-VM synchroniza-
tion mechanisms are used.

Program PCI-BAR (4 MB):
The fuzzing application is stored in the Program PCI-Bar. This memory region is
only accessed once by the guest during the initialization processes. Afterwards
the program is copied into the user space and executed once until the target OS
crashes.

Arguments PCI-BAR (4 KB):
In addition to the fuzzing program, the Argument PCI-BAR stores additional argu-
ments for the fuzzing program. This is especially useful for fuzzing applications
such as filesystem fuzzer, whereas the filesystem type (e.g. EXT4) is specified in
this PCI-BAR.

kAFL Bitmap PCI-BAR (64 KB):
The already mentioned kafl_logger() function manipulates the kAFL Bitmap PCI-
BAR memory. This memory region represents the already shown AFL bitmap (see
chapter 2.1.4) and is exactly as large as the original bitmap size.

Furthermore, the kAFL guest device emulates an additional MMIO-area for synchro-
nization purposes and unidirectional communication from the guest to the host. The
guest is able to use the following commands for unidirectional notification via writing
into the MMIO-memory:

MMIO_REG_IRQ:
This command is used for the synchronization process. The guest notifies the host
that the host’s Interrupt Request (IRQ) was handled and the fuzzing application
is about to initiate a fuzzing iteration. This is used to prepare for the host-side
certain states.

MMIO_REG_ACQUIRE:
This command is sent by the guest to acquire the next payload. Afterwards, the
host writes the requested payload into the Payload PCI-BAR and raises an IRQ to
notify the guest.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

MMIO_REG_PANIC:
If a kernel panic occurs, the guest notifies the host about the misbehavior via this
command.

MMIO_REG_KASAN:
If KASan* is supported and an issue was detected by it, the guest notifies the host
via this command.

MMIO_REG_READY:
This command is used only once during the initial setup process and notifies
the host that the guest has prepared and launched the fuzzing application and
is ready for the fuzzing process.

MMIO_REG_CR3:
This command is used for further Intel PT fuzzing and submits the CR3 value
of the fuzzing application to the host. The host is then able to utilizes the CR3
filtering capability of Intel PT (see chapter 2.4.4).

The kAFL device driver, is able to send commands to the guest system via a PIN-based
interrupt. This mechanism is only used for the synchronization process and therefore
no additional commands are defined. Nevertheless, before raising a PIN-based inter-
rupt, a notifier ID is written in the MMIO-region to avoid responsibility confusion be-
tween interrupt-handlers in the guest system due to IRQ-sharing†.

3.1.4 kAFL Guest Driver

For the usage of this virtual PCI-device, a kernel driver was developed, since the in-
teraction with a PCI-device is a privileged operation and only possible in supervisor
mode. This associated kernel driver for the virtualized target OS is called kAFL guest
driver.

The kAFL guest driver implements the PCI enumeration and exposes all kAFL guest
device resources to the guest’s user mode. This driver also provides the kafl_logger()

function and installs several hooks in the OS. This component is highly OS specific
and is currently only implemented for Linux x86-64. Fuzzing of other OSs using kAFL
requires a port of the kAFL guest driver. To expose kAFL guest device resources to

*KASan (Kernel Address Sanitizer) is fast memory error detector for the x86-64 Linux kernel. For
further information see: https://kernel.org/doc/html/latest/dev-tools/kasan.html

†https://www.kernel.org/doc/Documentation/PCI/MSI-HOWTO.txt

https://kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/Documentation/PCI/MSI-HOWTO.txt

3.1. KAFL FUZZER 37

the user mode, the kAFL guest driver provides an ioctl() interface and an additional
mmap() interface. The ioctl() interface is accessible via a device node and includes the
following commands:

KAFL_GUEST_ACQUIRE:
This function is called by the fuzzing application and blocks from within the ker-
nel until a new payload is copied to the Payload BAR. The notification about the
finished payload copy processes is submitted via an IRQ. This mechanism cir-
cumvents any concurrency issues.

KAFL_GUEST_GET_BAR{0-2}:
The user mode is able to acquire access to all PCI-BARs, except for the kAFL
Bitmap PCI-BAR. The kAFL guest driver uses a Page Frame Number (PFN) remap-
ping to provide this memory to user mode. Consequently, this results in a three
way remapping of the associated page frames, which are accessible from within
the host, the guest kernel and the guest user mode.

KAFL_GUEST_READY
Initially, a loader has to copy the program from the according PCI-BAR and launch
the program. But before the fuzzing application is executed, the loader program
notifies via this ioctl() command, that the fuzzing program is ready and is going
to be launched.

In addition to this, the kAFL guest driver contains the kafl_logger() function, which
uses the same hash function as introduced by AFL (see listing 2.3). In contrast to the
AFL hash function, this implementation uses the kAFL bitmap PCI-BAR as the target
memory. Hence, it is possible to access the memory of the kAFL bitmap even after a
crash in the target OS has occurred.

To notify the host about misbehavior, the kAFL guest driver hooks during the on-load
routine the Panic- and KASan-handler function. If a handler function is called during
runtime, the execution is redirected to the following code in listing 3.2 (accordingly
adapted for the KASan-handler). This code directly notifies the host and afterwards
halts the vCPU. Beforehand, all interrupts are disabled (by using cli instruction), which
leads to a stopped vCPU until the host loads a VM snapshot or restart the virtualized
OS.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Listing 3.2 kAFL Linux x86-64 panic handler

1: void kafl_panic(void){

2: asm volatile("cli\n\t");

3: writel(MMIO_REG_PANIC, kafl_guest_dev.regs+status_reg);

4: asm volatile("hlt\n\t");

5: }

3.1.5 Inter-VM Communication

To summarize the inter-VM communication model, an initial user mode loader appli-
cation interacts with the kAFL guest driver and copies the fuzzing application from
Program PCI-BAR (1). The kAFL guest driver provides access to all PCI-BAR, except
for kAFL Bitmap PCI-BAR, via mmap() (2). Afterwards, the program is written to a file
and executed by using execve(). Figure 3.3 illustrates this process. To simplify this
illustration, the interaction with Argument PCI-BAR was left out.

kAFL PCI Device (QEMU)

PCI-BAR0 (Payload)

PCI-BAR1 (Program)

PCI-BAR2 (Arguments)

PCI-BAR3 (AFL Bitmap)

IO-Mapping Area (Synchronization)

kernel virtual memory

PCI-Mapping

kernel Text

kAFL Guest Driver

user virtual memory
(loader program)

(1) copy and (later) execute
programm from PCI-BAR 1

(2) copy fuzzer application

0x0000000000000000

0xffffffffffffffff

Figure 3.3: Guest User Mode Loader

3.1. KAFL FUZZER 39

Figure 3.4 illustrates the subsequent execution of the fuzzing application copied from
Application PCI-BAR.
When the fuzzing application from Application PCI-BAR is ready, the application initi-
ates the synchronization process via an ioctl() command KAFL_GUEST_ACQUIRE (1). This
ioctl() command blocks until the payload is copied by the host and the host finishes
the synchronization process via a raised IRQ (2). The fuzzing application copies the
payload data and injects it via a specified fuzzing routine and a sequence of syscalls
(3). Since the kernel is recompiled by using the kAFL compiler wrapper and thus par-
tially instrumented, the execution of instrumented code will result in frequent calls of
kafl_logger(). The function kafl_logger() sets coverage bits in kAFL Bitmap PCI-BAR
(4).

kernel virtual memory

PCI-Mapping

 kernel Text
(partial instrumented)

kAFL Guest Driver

user virtual memory
(program)

(3) fuzz instrumented
 kernel area

(1) synchronize via ioctl /
copy payload via mmap

(4) set coverage bits

(2) copy / synchronize

kAFL PCI Device (QEMU)

PCI-BAR0 (Payload)

PCI-BAR1 (Program)

PCI-BAR2 (Arguments)

PCI-BAR3 (AFL Bitmap)

IO-Mapping Area (Synchronization)

0x0000000000000000

0xffffffffffffffff

Figure 3.4: Guest Fuzzing Loop

This procedure is repeated for each fuzzing iteration. Since the fuzzing application
is interchangeable from within the host, the host has only once to start the user mode
loader application only once and creates a predefined VM snapshot as the starting point
for the fuzzing process.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2 vmx_pt KVM Extension

The initial approach of the feedback-measurement essentially depends on compile-time
instrumentations. Since closed-source operating systems such as Windows or macOS
cannot be recompiled for this purpose, a more sophisticated approach is needed.

Utilizing Intel PT allows it to trace branch transitions without patching or recompil-
ing the targeted kernel. Unfortunately, no publicly available driver was able to trace
only VMX non-root operations using Intel PT at the time of this research. For instance,
Simple-PT [Kle] does not support long-term tracing by design. The perf-subsystem
[PPt] supports tracing of VMX non-root operations and long-term tracing. However,
all publicly available Intel PT drivers for Linux are designed to trace logical CPUs*, not
vCPUs. Even if VMX tracing would be supported, the data would be associated per
logical CPU and not per vCPU. Therefore, the VMX context would be spread around
all trace samples for each logical CPU and must be reassembled costly. An academic
prototype driver, which is an extension of KVM, has been developed to fix these is-
sues. This extension is called vmx_pt and provides a fast and reliable trace mechanism
for KVM vCPUs. Moreover, this extension provides, such as KVM, an extensive user
mode interface to expose this additional CPU feature to userland.

*Those Intel PT drivers implement System-Wide tracing (see figure 3.1).

3.2. VMX_PT KVM EXTENSION 41

3.2.1 Intel PT Aware Hypervisor

Trace samples should ideally contain only branch information of the associated vCPU.
To achieve this objective, Intel has envisaged multiple trace models for Intel PT. Those
trace models are described in the official PT documentation as “Common Usages of
Intel PT and VMX” (see table 3.1).

Target Domain Output Consumer
Virtualize

Output
TraceEN Configuration

System-Wide (VMM + VMs) Host NA WRMSR or XRSTORS by Host

VMM Only Intel PT Aware VMM NA
MSR load list to disable tracing in

VM, enable tracing on VM exits

VM Only Intel PT Aware VMM NA
MSR load list to enable tracing in

VM, disable tracing on VM exits

Intel PT Aware Guest(s) Per Guest
VMM adds

trace output

virtualization

MSR load list to enable tracing in

VM, disable tracing on VM exits

Table 3.1: Common Usages of Intel PT and VMX, table taken from [Intc]

Intel specifies for our best fitting trace model the target domain as VM Only and re-
quires an Intel PT Aware VMM. For this project, KVM was chosen and extended as
following to become an Intel PT Aware VMM: KVM ensures that during transitions
from VMX root to VMX non-root, Intel PT tracing will be toggled and also handled.
Figure 3.5 is an extended version of the already shown figure 2.2 and illustrates the
above mentioned toggling mechanism.

VMX Off Root Non-Root

VMX On

VMXOFF

VMXON VM Entry

VM Exit

enable
Intel PT

disable
Intel PT

Figure 3.5: Intel PT VM Only Tracing

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

To enable Intel PT, software that runs within ring 0 has to modify the TraceEn bit of
IA32_RTIT_CTL_MSR to 1 (see chapter 2.4). After Intel PT has been enabled, the logical
CPU will trace any code that is executed if it satisfies configured filter options. The
modification of IA32_RTIT_CTL_MSR.TraceEn has to be done before the CPU switches
from VMX root to VMX non-root operation, since otherwise the CPU will execute guest
code and thus is technically unable to modify any host MSRs. This procedure is also re-
quired the other way around after the CPU switches from VMX non-root to VMX root
operation. However, enabling or disabling Intel PT will also result in collected trace
data between the VMX mode transition and the MSR modification to enable or dis-
able Intel PT. To circumvent the collection of unwanted trace data within the VMM, the
hypervisor can exploit the MSR autoload capabilities of Intel VT-x (see chapter 2.2.5).
MSR autoloading can be enabled by modifying the VM-Entry Control Fields as well as
the VM-Exit Control Fields. This forces the CPU to load a list of preconfigured values for
defined MSRs after either a VM-Entry or VM-Exit occurs. If MSR autoload is used, the
hypervisor must instead of autonomously modifying IA32_RTIT_CTL_MSR.TraceEn be-
fore a VM-Entry or after a VM-Exit event occurs, just configure once the MSR autoload
capability for IA32_RTIT_CTL_MSR. For this purpose, KVM provides the helper function
add_atomic_switch_msr() to automatically prepare VM-Entry and VM-Exit Control for
the autoload MSR feature.

3.2.2 ToPA Configuration

The Table of Physical Addresses (see chapter 2.4) is an essential part of vmx_pt and facili-
tates the implementation of long-term Intel PT tracing. The ToPA mechanism provides
a hardware-assisted mechanism to notify software if a configured ToPA entry has been
filled (using ToPA Entry Field INT) or to disable tracing automatically (using ToPA Entry
Field STOP). By utilizing both capabilities, it is possible to implement a reliable long-
term tracing mechanism. vmx_pt leverages both capabilities and creates the following
ToPA configuration during usage.

3.2. VMX_PT KVM EXTENSION 43

ToPA Entry A (INT)

 ToPA Entry B (STOP)

ToPA Entry C (END)

(1) send LVT PMI after filled

(2) disable tracing after filled

Base Region

Fallback Region (4 kB)

IA32_RTIT_OUTPUT_BASE.BasePhysAddr

Physical Memory
0xffffffffff

0x0

(3) ToPA Entry C pointing to Entry A

Figure 3.6: vmx_pt ToPA Configuration

As shown in figure 3.6, the first ToPA entry is pointing to the Base Region and sets the
TopA entry field INT. The Base Region is the main buffer for arising trace data. If the
associated LVT PMI is enabled, the processor will raise an interrupt if the INT marked
entry region is filled. This LVT PMI is automatically activated by vmx_pt during the
initial on-load routine and configured as a Non-Maskable Interrupt (NMI) according to
the associated Intel Advanced Programmable Interrupt Controller (APIC) documenta-
tion [Int96]. Moreover, an interrupt handler will be registered for the LVT PMI. Since
every raised NMI would result in a VM-Exit event, the PMI handler “handles” this
NMI afterwards and a vmx_pt VM-Exit handler can save the trace data and reconfigure
the ToPA for further usage. Therefore, the loss of trace data is impossible and long-term
tracing would be guaranteed. Unfortunately, as already mentioned, Intel specifies this
PMI as not precise. Thus, it cannot be ensured that the interrupt handler is called timely.
To deal with this quirky issue and to avoid potential trace data losses, vmx_pt configures
an additional fallback output region. This fallback region is by default 4 kB in size and
ensures that the processor is able to keep tracing until the PMI is raised and tracing
can be disabled. vmx_pt can later distinguish the number of written bytes within the
fallback region by reading IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset.

In case of a ToPA Stop event, the processor will include an Overflow Packet (OVP) to the
trace data after the tracing will be resumed again. During multiple empirical test runs*,

*This includes the tracing of a virtualized Linux 4.8.1 kernel during the compiling of the same kernel
from source in user mode, whereas only the kernel mode was considered.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

OVPs have never been found within the trace data. Therefore, it seems sufficient to use
a fallback area which is 4 kB in size. At most, a fallback output area offset of nearly 1 kB
has been measured during complex fuzzing test runs. In consequence, a ToPA overrun
is very unlikely, but can be circumvented easily by increasing the size of the fallback
output region.

3.2.3 Entry / Exit Handling

vmx_pt was designed to trace code execution between a VM-Entry and a VM-Exit event
to provide coherent trace samples of the virtualized guest system. Furthermore, vmx_pt

is also designed to allow long-term tracing. This implies that vmx_pt permanently
checks if the ToPA base region has been overrun. Therefore, vmx_pt installs two function
calls during the on-load-routine to be called before KVM switches the CPU to vmx non-
root operations and after the CPU leaves the vmx non-root operations. Those functions
are called vmx_pt entry and exit handler.

Listing 3.3 vmx_pt Entry Handler

1: void vmx_pt_vmentry(struct vcpu_vmx_pt *vmx_pt){

2: if (enabled && vmx_pt && vmx_pt->configured){

3: /* reset ToPA configuration if overrun occurred */

4: if (vmx_pt->reset){

5: vmx_pt->reset = false;

6: prepare_topa(vmx_pt);

7: }

8: /* load vCPU specific configuration / previous ToPA state */

9: vmx_pt_reconfigure_cpu(vmx_pt);

10: }

11: }

Within the vmx_pt entry handler (see listing 3.3), vmx_pt checks if the base output region
has been overflowed since the last guest mode execution (line 4). In such case, the
user mode has to check if a ToPA overrun occurred and must copy or process the trace
data in advance. Since the next time vmx_pt entry handler is called, the ToPA will be
reconfigured and the current region and offset pointer be adjusted (line 6). As a result,
the ToPA base region can be used again. Finally, the vmx_pt entry handler reconfigures
the CPU.

3.2. VMX_PT KVM EXTENSION 45

Listing 3.4 vmx_pt Exit Handler

1: void vmx_pt_vmexit(struct vcpu_vmx_pt *vmx_pt){

2: u64 topa_base, topa_mask_ptrs;

3: if (enabled && (vmx_pt != NULL)){

4: if (vmx_pt->configured){

5: /* save current ToPA state */

6: rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK_PTRS,

7: topa_mask_ptrs);

8: WRITE_ONCE(vmx_pt->ia32_rtit_output_mask_ptrs,

9: topa_mask_ptrs);

10: }

11: }

12: }

Unfortunately, frequent CPU reconfiguration is essential, since it is impossible to en-
sure that the CPU on which vmx_pt currently operates is the same as the last time the
vmx_pt entry handler was called. The scheduler is able to arbitrary choose the best-
fitting logical CPU for each guest mode switch. To deal with scheduling interferences,
vmx_pt must ensure the integrity of the ToPA, Intel PT related MSR values, and other
per-processor data before tracing is enabled. By saving the current state in the vmx_pt

exit handler (line 6 and 7 in listing 3.4) and reconfiguring the associated MSRs in the
vmx_pt entry handler, the Intel PT state of the associated CPU keeps consistent. There-
fore, the vmx_pt entry handler has to reconfigure all previously saved Intel PT related
MSRs each time. The vmx_pt exit handler saves the following per-CPU MSRs:

• IA32_RTIT_OUTPUT_BASE

• IA32_RTIT_OUTPUT_MASK_PTRS

• IA32_RTIT_CR3_MATCH (only if configured and used)

• IA32_RTIT_ADDR[0,1,2,3]_[A,B] (only if configured and used)

Besides that, the vmx_pt entry handler has to check also if MSR_IA32_RTIT_STATUS.Error

was set before switching into the guest mode and resolve the issue if an error has oc-
curred.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

The vmx_pt entry handler as well as the vmx_pt exit handler are called in a critical code
area. Fortunately, KVM also runs shortly before switching into guest mode into a crit-
ical code area and thus handles the synchronization. This is achieved by disabling
preemption temporally before switching to guest mode and activate the preemption
as soon as possible after the VMX exit event. To disable scheduling in critical code
areas within KVM and avoid concurrent access of per-processor data, KVM executes
preemption_disable() before and preemption_enable() afterwards*. vmx_pt exploits this
mechanism and both handlers are called within this critical section. Calling the vmx_pt

entry and exit handler within this section ensures that during the reconfiguration and
saving procedure of all Intel PT related MSRs no concurrent access occurs.

3.2.4 Userspace Interface

To expose vmx_pt tracing capabilities to userspace, the established KVM ioctl()-interface
(see chapter 2.3.3) was extended to serve this purpose. The userspace application has
to acquire a new file descriptor via the ioctl()-command KVM_VMX_PT_SETUP_FD, which
is sent to the vCPU related file descriptor. The kernel will then return a further vmx_pt

specific file descriptor. This file descriptor provides a set of new ioctl()-commands,
which provide all configurable Intel PT capabilities of the associated vCPU. To give an
illustration, table 3.2 lists all new ioctl-commands.

Moreover, a mmap-interface was implemented to expose the tracing data in a zero-copy
fashion. This mmap-interface directly maps both ToPA output buffers to the associated
userspace virtual memory buffer via PFN remapping by using the kernel helper func-
tion remap_pfn_range()†. Since both ToPA output buffers are always 4 kB aligned,
the mmap-interface is able to provide a coherent remapping of both ToPA buffers in
userspace even if both ToPA output buffers are incoherently located in physical mem-
ory.

*See for further information: https://www.kernel.org/doc/Documentation/preempt-locking.txt
†For further information see: https://www.kernel.org/doc/Documentation/x86/pat.txt

https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://www.kernel.org/doc/Documentation/x86/pat.txt

3.2. VMX_PT KVM EXTENSION 47

Command (ioctl) Argument Description

KVM_VMX_PT_SETUP_FD - Acquire vmx_pt-fd per VCPU

KVM_VMX_PT_GET_TOPA_SIZE - Inquire size of ToPA region

(excluding size of overflow region)

KVM_VMX_PT_CHECK_TOPA_OVERFLOW - Check if ToPA overflow occurs

Returns overflow bytes

KVM_VMX_PT_ENABLE - Enable PT guest tracing for VCPU

KVM_VMX_PT_DISABLE - Disable PT guest tracing for VCPU

KVM_VMX_PT_ENABLE_CR3 - Enable cr3 filtering

KVM_VMX_PT_DISABLE_CR3 - Disable cr3 filtering

KVM_VMX_PT_CONFIGURE_CR3 Target Configure cr3 Filtering

PML4T

KVM_VMX_PT_CONFIGURE_ Target IP Configure IP filtering for

ADDR{0-3}_{A,B} addr{0-3}_{a,b}

KVM_VMX_PT_ENABLE_ADDRN addr{0-3} Use addr{0-3} filtering configuration

KVM_VMX_PT_DISABLE_ADDRN addr{0-3} Ignore addr{0-3} filtering configuration

Table 3.2: vmx_pt ioctl() Interface

Consequently, the chosen file descriptor hierarchy is not only a clean and Unix-like
interface, it does also provide full support for concurrency during vCPU tracing. Es-
pecially the separation of the allocation and management of ToPA areas, the pre- and
post-handlers are the reason for this feasible implementation. As a result, vmx_pt allows
tracing of an arbitrary number of concurrently executed virtual machines as well as an
arbitrary number of virtual CPUs without losing the ability of generating continuous
context-sensitive VMX trace samples.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3 QEMU PT

In order to make use of the KVM extension vmx_pt, a userspace counterpart is required.
QEMU PT is an extension of QEMU and provides full support for vmx_pt. This is
achieved via utilizing the newly introduced user mode interfaces. This also includes
procedures to enable, disable, configure Intel PT during runtime and the periodic ToPA
status check to avoid overruns.

3.3.1 vmx_pt Integration

As already mentioned in chapter 3.2.4, vmx_pt is accessible from within the user mode
via ioctl()-commands and an additional mmap()-interface. The communication of QEMU
and KVM is also based on ioctl()-commands and mmap() calls and is located within a
more sophisticated implementation of the already shown KVM loop in chapter 2.3 (see
listing 2.6).

ioctl(vcpu_fd, KVM_RUN)

handle(exit_reason)

GUEST-MODE

Kernel Mode User Mode

KVM / vmx_pt QEMU

vmx_pt_vmexit() vmx_pt_destroy()

size = ioctl(vmx_pt_fd, KVM_VMX_PT_CHECK_TOPA_OVERFLOW)

size
= 0

copy_mmap(…) true

vmx_pt_check_overflow()

false

decode_pt(…)

vmx_pt_mmapToPA-Area

vmx_pt_vmentry()

Figure 3.7: KVM / vmx_pt and QEMU Execution Loop

To configure vmx_pt, QEMU PT has to initially obtain a vmx_pt file descriptor from the
vCPU file descriptor and send appropriate ioctl() commands via this file descriptor
to configure vmx_pt once (see chapter 3.2.4).

3.3. QEMU PT 49

To circumvent any loss of trace data, the user mode component has to check after each
KVM_RUN iterations, if the ToPA Base region of vmx_pt is overflowed. In such case, the
user mode has to process the data or copy data before KVM_RUN is called the next time. As
illustrated in figure 3.7, QEMU PT has to check the ToPA Base region state immediately
after the VM-Exit reason is handled.
If the ioctl() command KVM_VMX_PT_CHECK_TOPA_OVERFLOW returns a non-NULL value,
the ToPA buffer is full and the trace data must be copied via mmap() or processed in-
place. The used Intel PT software decoder, which is introduced in chapter 3.4, processes
the data in-place and avoids any superfluous coping. This approach provides a zero-
copy characteristic thanks to the mmap-mapping.

From a more technical perspective, the function kvm_cpu_exec(CPUState *cpu), which
implements a more extensive version of the KVM-loop, was extended to provide full
support for vmx_pt. Since this loop is processed each time KVM executes guest code
and the VM-Exit reason is handled, function calls to a vmx_pt handlers at the prolog
and epilog of the loop are installed (see listing 3.5). Via those vmx_pt handlers any
configuration requests from the user or kAFL are processed in the prolog-handler.

Listing 3.5 Extended KVM-loop within ./kvm-all.c

1: int kvm_cpu_exec(CPUState *cpu)

2: {

3: /* ... */

4: do {

5: /* ... */

6: pt_pre_kvm_run(cpu); /* VMX_PT prolog handler */

7: /* ... */

8: run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);

9: /* ... */

10: switch (run->exit_reason) {

11: /* ... handle exit reasons */

12: }

13: pt_post_kvm_run(cpu); /* VMX_PT epilog handler */

14: } while (ret == 0);

15: /* ... */

16: }

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

In the vmx_pt handler, called at the epilog of the KVM-loop, the handler checks whether
the main ToPA Buffer has overflowed or not. If the ToPA has been overflowed, the off-
byte of the ToPA fallback region size will be provided and QEMU-PT will process the
trace data.

To provide support for the instrumentation-based implementation of kAFL, the fuzzer
interface of kAFL was adapted to support vmx_pt. In contrast to the old implementa-
tion, the fuzzer has to specify the desired IP-filter ranges. The kAFL guest driver of
QEMU PT does also provide a kAFL bitmap. The kAFL bitmap is not represented by a
PCI-BAR, but it is generated by the Intel PT software decoder based on traced branch
transitions.

3.3.2 Management Interface

The QEMU Monitor, also known as QEMU Management Console*, allows the monitor-
ing and controlling of running VMs. This text-oriented interface provides the ability
to create or load VM snapshots during execution, hot-plug new peripheral devices or
even hot-plug new vCPUs. To offer a direct way to communicate with the vmx_pt exten-
sion during execution, additional QEMU Management Console commands are added
to QEMU PT. This includes the following commands:

Command (hmp) Arguments Description

pt enable vCPU ID Enable tracing for specified vCPU

pt enable_all - Enable tracing for presented vCPUs

pt disable vCPU ID Disable tracing for specified vCPU

pt disable_all - Disable tracing for presented vCPUs

pt status vCPU ID Print PT status information of the vCPU context

(PT enable status, ToPA Overflows, Trace Size)

pt status_all - Print PT status information of all vCPU contexts

pt ip_filtering vCPU ID, ADDRn ID, Configure PT IP filtering

ADDR_A, ADDR_B

pt cr3_filtering vCPU ID, PML4T Configure cr3 Filtering

pt set_file Trace File Write trace data to specified files

Table 3.3: QEMU PT Management Console Commands

*https://en.wikibooks.org/wiki/QEMU/Monitor

https://en.wikibooks.org/wiki/QEMU/Monitor

3.3. QEMU PT 51

This interface provides the ability to manually record Intel PT samples of vCPU activity
for various purposes. This might be useful for further projects, which are based on
vmx_pt and QEMU PT. The following listing shows a sample interaction with via QEMU
Management Console.

Listing 3.6 Sample Interaction with the Management Console of QEMU PT
QEMU PT 2.6.0 monitor - type ’help’ for more information
(qemu) pt set_file /tmp/pt_trace_data
(qemu) pt ip_filtering 0 0 0xffffffff83a00000 0xffffffff83a26160
CPU 0: ip filtering enabled...
(qemu) pt enable_all
CPU 0: processor trace enabled!
(qemu) pt status 0
Processor Trace Status (CPU 0)

enabled: yes
ToPA overflows: 24
trace data size: 12583936 (12MB)
pt_ip_filter_0_a: 0xffffffff83a00000
pt_ip_filter_0_b: 0xffffffff83a26160

(qemu) pt disable 0
CPU 0: processor trace disabled!

After executing the commands shown in listing 3.6, QEMU will create the following 3
files:

1. /tmp/pt_trace_data_raw_cpu0

2. /tmp/pt_trace_data_decoded_cpu0

3. /tmp/pt_trace_data_code_cpu0_0

All files indicate the associated vCPU by the postfix (_cpu[id]). The raw file contains
the data copied from the ToPA output buffers without applied post-processing. The
decoded file contains a list of executed Conditional Branch CoFI opcodes (see table 2.1).
Finally, the code file stores the associated code, which was executed related to the con-
figured IP filter (0xffffffff83a00000 - 0xffffffff83a26160) . If no IP filter was config-
ured, only the raw file will be created.

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.4 JIT-Decoder

Extensive kernel fuzzing may generate several hundreds of megabytes of trace data
per second. To deal with such large amounts of incoming data, the decoder must be
implemented with a focus on efficiency. Otherwise, the decoder would become the
major bottleneck during the fuzzing process and limit the effective performance. Nev-
ertheless, the decoder must also be precise, as inaccuracies during the decoding process
would result in further errors. This is due to the nature of Intel PT decoding, since the
decoding process is sequential and is affected by previously decoded packets.

To limit effort to implement an Intel PT software decoder, Intel provides its own decod-
ing engine called libipt*. libipt is a general-purpose Intel PT decoding engine, but it
does not fit our purposes very well, since libipt decodes trace data in order to provide
execution data and flow information. Furthermore, libipt does not cache disassembled
instructions and provides an overall poor performance compared to our approach†.

Since kAFL relies only on flow information and the fuzzing process is applied on the
same “application”, it is possible to optimize the decoding process. The developed Intel
PT software decoder acts like an “JIT-Decoder”, which means that code sections are
only considered if they are executed according to the decoded trace data. To optimize
further lookups, all disassembled code sections are cached.

*https://github.com/01org/processor-trace
†According to Shlomi Oberman and Ron Shina [OS16], the decoding process of several hundreds

megabytes of trace data using libipt would require several hours of processing.

https://github.com/01org/processor-trace

3.4. JIT-DECODER 53

3.4.1 Decoding of Trace Data

kAFL only requires information about the executed control flow, whereas Intel PT also
provides execution information such as TSC, MNT and CBR. For our use, it is sufficient
to focus on flow-information packets only. Thus, Intel PT packets are not considered for
further processing. However, the decoding process itself is required to determine the
offset to the following packet, since Intel PT packets do not have a uniform packet size.
The following algorithm represents the decoding process of this Intel PT JIT-Decoder:

Algorithm 2: Decoder Algorithm

1 last_IP← 0

2 while pkt = decode_packet(buffer) do

3 if pkt.type == TNT then
4 TNT_cache.append(pkt.value)

5 else if pkt.type == TIP_PGE then
6 last_ip = pkt.value

7 else if pkt.type == TIP or
8 pkt.type == TIP_PGD or
9 pkt.type == TIP_FUP then

10 follow_and_dissemble(last_IP)
11 last_ip = pkt.value

12 end

The buffer containing the Intel PT trace sample is decoded into a sequence of Intel PT
packets. Only a small subset of Intel PT packets are considered and handled. The
values of TNT packets are always cached (line 3-4), since, depending on the presented
CPU model, the CPU will cache those packets as well. Therefore, it might be necessary
to cache TNT packets for later use. TIP.PGE indicates the beginning of a trace session
and the IP value is saved for later use (line 5-6). If a TIP, TIP.PGD or TIP.FUP packet
is decoded, the decoder executes the function fetch_and_follow() and processes the
previously saved IP (last_IP) and all cached TNT packets (line 7-11).

54 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.4.2 Binary Disassembling and Model Transfer

The JIT-Decoder has to decode a large number of trace samples related to the same
disassembly during the fuzzing process. Using a general-purpose Intel PT decoding
engine is non-optimal, since the engine would disassemble the code on every appear-
ance, even if the same basic blocks are processed. Instead, it is more efficient to cache
interesting instructions and disassemble them only once. This comes at the cost of a
much higher memory consumption, but significantly reduces CPU load during further
processing and look up. However, the higher memory consumption was found to be
tolerable, since the JIT-Decoder only focuses on CoFIs and the targeted kernel code area
is relatively small* in most use cases.

To cache CoFIs, the decoder has to disassemble unknown code sections and transfer
CoFIs into a special data structure (see listing 3.7). The JIT-Decoder uses a data struc-
ture (cofi_list) to represent an object of a linked list for memory management pur-
poses and to track all allocated CoFI objects (list_header) in memory. Such objects are
generated during runtime, each time an unseen code section is disassembled. Another
pointer references to the next decoded CoFI object (cofi_ptr), which is used to fetch the
next CoFI if a jump instruction was not “taken”. The counterpart pointer (taken_ptr) is
set during runtime if a jump was actually taken, otherwise this pointer is set to zero.

Listing 3.7 JIT-Decoder Data Structures
typedef struct {

uint64_t addr; /* opcode address */
uint64_t taken_addr; /* (jmp) target address */
cofi_type type; /* CoFI Type */

} cofi_header;

typedef struct cofi_list {
struct cofi_list *list_ptr; /* Pointer to the next list element */
struct cofi_list *cofi_ptr; /* Pointer to the next CoFI */
struct cofi_list *taken_ptr; /* Pointer to the "taken" CoFI */
cofi_header *cofi; /* Pointer to the CoFI data */

} cofi_list;

*To give an example: The core of the Linux kernel (Linux Debian 4.8.5-1-amd64) is ≈ 13MB in
size. This does not include additional kernel modules.

3.4. JIT-DECODER 55

Each time the disassembler decodes an unknown code section, every CoFI is translated
into those objects. The decoding process is terminated if the decoder is unable to decode
the next instruction or the end of a function appears. During this process, every CoFI
is categorized into one of the following CoFI types:

1. CONDITIONAL_BRANCH

2. COFI_TYPE_UNCONDITIONAL_DIRECT_BRANCH

3. COFI_TYPE_INDIRECT_BRANCH

4. COFI_TYPE_NEAR_RET

5. COFI_TYPE_FAR_TRANSFERS

There is one exception for non-CoFIs. If a regular instruction is located on an unpro-
cessed target address, an object is also created with the cofi_ptr reference to the next
CoFI in the disassembled binary. Non-CoFI occurrences are typed as NO_COFI_TYPE. Fur-
thermore, COFI_TYPE_INDIRECT_BRANCH, COFI_TYPE_NEAR_RET, COFI_TYPE_FAR_TRANSFERS are
heuristics to indicate the end of a function.

In parallel, a hash map is created and filled with all cofi_list objects referenced by
the opcode address as key value. This hash map is based on kHash* and is used for
fast lookups of CoFI target addresses, which are unknown during the disassembly pro-
cess. This includes the occurrence of COFI_TYPE_INDIRECT_BRANCH, COFI_TYPE_NEAR_RET

and COFI_TYPE_FAR_TRANSFERS. If an object is not found in the hash table, the located
code section is not yet disassembled and processed. To limit the number decoded and
processed CoFIs during runtime, the taken address of CONDITIONAL_BRANCH is not con-
sidered. However, if a taken address is resolved and disassembled during runtime, a
reference in cofi_list is set to prevent further effort (using taken_ptr).

Figure 3.8 illustrates this process. This example is based on the application shown in
listing 2.7 and the trace data shown in listing 2.8. The cofi_header objects are ordered
relatively to the opcode address, whereas the cofi_list objects are numbered chrono-
logical order. Note that the NO_COFI_TYPE objects are allocated later during runtime,
since those objects are only generated if the decoder follows an address which is not a
CoFI.

*https://github.com/attractivechaos/klib/blob/master/khash.h

https://github.com/attractivechaos/klib/blob/master/khash.h

56 CHAPTER 3. DESIGN AND IMPLEMENTATION

Head

Element 1

Element 2

Element 3

Element 4

0x1000 (mov)
NO_COFI_TYPE

0x100b (jmp eaxx)
FAR_TRANSFER

0x1013 (jae)
CONDITIONAL_BRANCH

0x1017 (jmp eaxx)
FAR_TRANSFER

0x1010 (hlt)
NO_COFI_TYPE

Element 5

0x1011 (mov)
NO_COFI_TYPE

Element 6

cofi_list cofi_header

cofi
list_ptr

cofi_ptr

taken_addr

Figure 3.8: JIT-Decoder Data Structure

To disassemble x86-64 code, the Capstone Engine* was used. Moreover, if kAFL config-
ures one of four possible IP ranges (using Intel PT IP-filter options) during runtime, the
guest’s memory located at this IP-range is carved out and considered as the associated
application for Intel PT decoding. Since every commonly used x86-64 OS uses a split
virtual memory layout†, the kernel memory is mapped to any virtual address space and
therefore is located always at the same virtual address.

*http://www.capstone-engine.org
†This means that the kernel is commonly located at the upper half of the virtual memory space. The

virtual memory space of linux is typically split into kernelspace (upper half) and userspace (lower half)
to the size of 247 each, due to the 48-bit virtual address limit of current x86-64 CPUs.

http://www.capstone-engine.org

3.4. JIT-DECODER 57

3.4.3 Fetch and Follow

Since every code section is disassembled and translated into another data representa-
tion once, the JIT-Decoder is able to apply a fetch and follow approach on this data. This
means, that the decoder has to fetch the next CoFI object address based on the new data
representation and follow this address to get the next CoFI object. Depending on the
CoFI type, other procedures are used to fetch the following CoFI object address. The
following algorithm describes those procedures depending on the CoFI type based on
the data representation shown in listing 3.7.

Algorithm 3: follow_and_dissemble() Algorithm
Input: last_IP

1 obj = get_or_disas(last_IP)
2 while true do

3 if obj.type == COFI_TYPE_CONDITIONAL_BRANCH then
4 tnt = tnt_cache_get()
5 if tnt.type == TNT_CACHE_EMPTY then
6 exit

7 set_kAFL_bitmap(obj.addr)
8 if tnt.type == TNT_CACHE_TAKEN then
9 obj = get_or_disas(obj.taken)

10 if tnt.type == TNT_CACHE_NOT_TAKEN then
11 obj = obj.cofi_ptr

12 else if obj.type == COFI_TYPE_UNCONDITIONAL_DIRECT_BRANCH then
13 obj = get_or_disas(obj.taken)

14 else if obj.type == COFI_TYPE_INDIRECT_BRANCH or
15 obj.type == COFI_TYPE_NEAR_RET or
16 obj.type == COFI_TYPE_FAR_TRANSFERS then
17 exit

18 else if obj.type == NO_COFI_TYPE then
19 obj = obj.cofi_ptr

20 end

The function get_or_disas() is called to fetch an already existing CoFI object based on
a virtual address of the guest’s memory (not the pointer to the next CoFI object) from

58 CHAPTER 3. DESIGN AND IMPLEMENTATION

the hash map or otherwise disassemble and processes the code section. Conditional
Branch instructions and a cached not-taken TNT value would result in following the
next CoFI instruction using cofi_ptr (line 10-11). In case of a taken TNT value, the next
CoFI object will be obtained via get_or_disas() (line 8-9). To minimize wasteful hash
map accesses, the taken_ptr will be set during the first time executing get_or_disas()

for next iterations. If the TNT-Cache is empty, the function is exited and the JIT-Decoder
has to decode more Intel PT packets in order to reconstruct the control flow (line 5-6).
The Unconditional Direct Branch instruction obviously just have one pointer to follow,
due to the always taken jump (line 12-13). The taken_ptr will also be set during the first
call of get_or_disas() to avoid hash map accesses. Indirect Branch, Near Ret, and Far
Transfers CoFIs are handled differently. Since the target addresses are only obtainable
during runtime, those CoFI types relies on TIP, TIP.PGD or FUP Intel PT packets, which
provides the target address. Therefore, the function is exited, since the decoder must
find such Intel PT packet first(line 14-17). Finally, if a NO_COFI_TYPE object is processed,
the algorithm follows the cofi_ptr to the next CoFI object (line 18-19).

3.4. JIT-DECODER 59

3.4.4 Bitmap Translations

During the decoding process, the function set_AFL_bitmap() is called on occurrences
of COFI_TYPE_CONDITIONAL_BRANCH typed CoFIs and submits the opcode address of the
CoFI (line 7, algorithm 3).

Every COFI_TYPE_CONDITIONAL_BRANCH typed CoFI indicates a new basic block transition.
Since the non-altering Intel PT approach does not provide compile-time random values,
it is not possible to reuse the traditional AFL bitmap approach. Nevertheless, since
opcode addresses within the kernel space are always unique, those are a suitable al-
ternative for the required compile-time random. The following listing represents the
modified AFL hash function. Note that only the 16 least significant bits of the opcode
address are considered due the limited bitmap size of 64 kB (216).

Listing 3.8 Modified AFL hash function

1: #define BITMAP_SIZE 1<<16 /* 64 KB */

2: uint64_t bitmap_last_key;

3: uint8_t* bitmap = NULL;

4:

5: /* ... */

6:

7: static void pt_bitmap(uint64_t addr){

8: if(bitmap){

9: bitmap[(addr ^ bitmap_last_key) & 0xffff]++;

10: bitmap_last_key = addr >> 1;

11: }

This approach for kernel fuzzing was initially proposed by Vegard Nossum*. Orig-
inally, this approach with a more sophisticated hash function was also used for the
Binary-only instrumentation fuzzing of AFL[Zal]. As demonstrated by the NCC group†,
it might be necessary to increase the bitmap size to circumvent hash collisions during
kernel fuzzing.

*http://lkml.iu.edu/hypermail/linux/kernel/1605.2/03665.html
†ProjectTriforce is based on the same approach and uses bitmap that is 1MB (220) in size to avoid too

much hash collisions during fuzzing [HN16b].

http://lkml.iu.edu/hypermail/linux/kernel/1605.2/03665.html

60 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.4.5 Trace Data Sanitization

During extensive kernel fuzzing, it is possible that non-deterministic code areas are
traced and thus part of the trace data. As already mentioned in chapter 2.1.7, tracing
non-deterministic code activities would clobber the kAFL bitmap and result in false
positive path detections. To circumvent bitmap clobbering, the trace data must be san-
itized during the decoding process.

Code Execution in Interrupt Context

One of the major part of the sanitization post-processing is to detect and opt out oc-
curring asynchronous events from the decoding process, such as soft Interrupt Service
Routines (ISRs). The most commonly known software ISR is the task-switch, which
may happen during user mode or even kernel mode execution. Because the processor
produces a FUP Intel PT packet after the occurrence of an ISR, it is possible to deter-
mine the beginning of an ISR execution based on the Intel PT trace data. The following
Intel PT signature can be used as a heuristic to determine the beginning of an ISR:

Listing 3.9 Interrupt / Asynchronous Event (Intel PT Signature)

1: FUP <Address of the previously executed instruction>

2: TIP <Address of the handler for the occurred asynchronous event>

After the occurrence of an asynchronous event, the decoder has to keep decoding the
trace data and find the exit of the ISR. During this process, the decoder does not set any
bits in the kAFL bitmap to circumvent bitmap clobbering. Typically, an ISR is leaved
by executing the iret instruction (Interrupt Return). If the decoder processes an iret

instruction, the ending of the ISR is found. Note that the x86-64 platform also supports
ISR nesting. Therefore, the decoder must track the level of nested ISRs and thus find
the corresponding number of iret instructions.

Code Execution Entry Point Consideration

If more than one IP-filtering range is configured, especially if a widely used kernel
helper function is within one of this area, bitmap clobbering might be possible. This
could happen, if a kernel module and a kernel helper function, which is frequently
called by other kernel modules, is within IP-filter ranges and thus are traced.

3.4. JIT-DECODER 61

To circumvent bitmap clobbering during the execution of kernel helper functions, the
decoder must track the previous address before the helper function is entered. This
allows it to distinguish if the helper function is called by the traced kernel module or
not. Due to the previous address, it is possible to decide whether the traced execution
of the kernel helper function should be considered or not.

Non-Deterministic Code Execution in Non-Interrupt Context

The execution of stateful kernel code could lead to bitmap clobbering, since kAFL does
only reload a VM snapshot if a misbehavior occurs due to performance reasons. There-
fore, a mechanism is required to spot non-deterministic code execution in non-interrupt
context. This includes, for instance, Linux kernel helper functions such as kmalloc()

and schedule() (in non-interrupt context). Since Intel PT does not provide further in-
formation about the execution of non-deterministic code areas, the detection of such
areas is difficult to achieve.

A promising approach would be the frequent sampling of the same fuzzing iteration
using the same input. Based on this data, the decoder can calculate a symmetric dif-
ference set of all occurred branch transition and use this set as heuristic to not consider
those areas in further iterations. This process must be repeated for each input, which
potentially result in a new path transition. However, this approach does not ensure
that also deterministic areas falsely marked as non-deterministic and opt out from fur-
ther consideration. Unfortunately, the challenge of implementing a reliable detection
of non-deterministic code areas is currently not solved.

62 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Evaluation

The evaluation of this thesis discusses the performance of all kAFL components. This
includes comparisons with related projects. The performance overhead of vmx_pt is dis-
cussed in chapter 4.1. Secondly, a performance comparison of the JIT-Decoder and an
Intel implementation of a software decoder is given in chapter 4.2. Finally, the overall
fuzzing performance of kAFL is compared to ProjectTriforce, which is based on the em-
ulation backend of QEMU instead of hardware-assisted virtualization and Intel PT (see
chapter 4.3). Moreover, chapter 4.4 provides an overview of all reported vulnerabilities,
which were found during the development process by kAFL.

The following benchmarks are performed on a desktop system based on an Intel i5-
6500 processor and 8GB DDR4 RAM. Furthermore, all benchmarks are performed on a
ram disk to avoid high influences of poor I/O performance.

As of time of writing, the development of kAFL is not finished and still ongoing. There-
fore, it is hard to predict, whether the following benchmark results could be improved
by further optimization or not. Furthermore, it can be assumed that even more vulner-
abilities will be found by using kAFL in the future, since the presented vulnerabilities
are found unintentionally during development.

63

64 CHAPTER 4. EVALUATION

4.1 vmx_pt Overhead

The KVM extension vmx_pt adds an overhead to the raw execution of KVM. Therefore,
the performance overhead was compared with several vmx_pt setups. This includes
vmx_pt in combination with the JIT-Decoder, vmx_pt without the JIT-Decoder but pro-
cessing a frequent ToPA state checks (using KVM_VMX_PT_CHECK_TOPA_OVERFLOW, see chap-
ter 3.2.4) and vmx_pt without any ToPA consideration. For this benchmark, a 13MB
kernel code range was configured via IP-filtering ranges and traced with one of the
aforementioned setups of vmx_pt. Those benchmarks consider only the kernel core, but
neither any kernel module. During vmx_pt execution only supervisor mode was traced.

To generate Intel PT load, QEMU 2.6.0 was compiled within a traced VM*. This bench-
mark was executed on a single vCPU. The resulting compile-time was measured and
compared. The following figure illustrates the relative overhead compared to KVM
execution without vmx_pt.

vmx_pt & JIT-Decoder

vmx_pt & ToPA Check

vmx_pt

0 % 1 % 2 % 3 % 4 %

1,097 %

2,97 %

3,881 %

0,237 %

0,271 %

0,314 %

0,52 %

0,665 %

0,823 %

Total User Kernel

�1

Figure 4.1: vmx_pt Overhead Comparison (Compiling QEMU-2.6.0)

Intel describes a performance penalty of < 5 % compared to execution without enabled
Intel PT. During our benchmarks, an overhead in between of 1% - 4% was measured.

*The ./configure option --target-list=x86_64-softmmu was used.

4.2. DECODER ENGINE 65

Since the resulting overhead is so small, it is not expected that it has major influence in
the overall fuzzing performance.

4.2 Decoder Engine

In contrast to vmx_pt, the decoder has a significant influence on the overall performance
of the fuzzing process, since the decoding process is, other than Intel PT and hence
vmx_pt, not hardware-accelerated. Therefore, this process is costly and has to be as
efficient as possible. Consequently, the performance of the developed JIT-Decoder was
compared to ptxed*. This decoder is Intel’s example implementation of an Intel PT
software decoder and is based on libipt and Intel XED†. To compare both decoder
engines, a small Intel PT trace sample was generated by executing

find / > /dev/null 2> /dev/null

within a Linux VM traced by vmx_pt‡. The generated sample is 9.4MB in size and
contains over 431, 650 TNT packets, each represents up to 7 branch transitions. Fur-
thermore, the sample also contains over 100, 045 TIPs. To compare different aspects
of the decoder engines, the sample was used as a raw copy and a sanitized copy. The
raw copy of the sample represents the raw content, whereas the sanitized sample only
contains flow information packets (see chapter 2.4.2). The file is hence smaller and only
5.3MB in size. This is used to avoid any influence of decoding large amount of execution
information packets (see chapter 2.4.1), since those are not considered by the JIT-Decoder.
Furthermore, both samples were used to generated larger files, whereas those files con-
tains the sample data multiple times. This includes test cases for 1, 5, 10, 50 and 250
copies per file. This is used to demonstrate the effectiveness of the fetch and follow ap-
proach of the JIT-Decoder. The following diagram illustrates the measured speedup of
the JIT-Decoder compared to ptxed:

*https://github.com/01org/processor-trace
†https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
‡Using the following kernel: Linux debian 4.8.0-1-amd64. Moreover, only code execution in

supervisor mode was traced.

https://github.com/01org/processor-trace
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library

66 CHAPTER 4. EVALUATION

Tabelle 1

Sample 1x Sample 5x Sample 10x Sample 50x Sample 250x Sanitized (1x) Sanitized (5x) Sanitized (10x) Sanitized (50x) Sanitized (250x)

Speedup 7,39 17,19 22,16 23,33 24,39 7,52 17,19 22,18 29,09 30,7

Sample 1x Sample 5x Sample 10x Sample 50x Sample 250x Sanitized (1x) Sanitized (5x) Sanitized (10x) Sanitized (50x) Sanitized (50x)

ptxed (libipt / xed) 0,266 1,314 2,595 12,929 64,68 0,218 1,014 2,018 10,181 50,408

JIT-Decoder (Capstone) 0,036 0,078 0,130 0,545 2,652 0,029 0,059 0,091 0,350 1,642

Speedup 7,39 16,85 19,96 23,72 24,39 7,52 17,19 22,18 29,09 30,7

0 %

1000 %

2000 %

3000 %

4000 %

Sam
ple

 1x

Sam
ple

 5x

Sam
ple

 10
x

Sam
ple

 50
x

Sam
ple

 25
0x

San
itiz

ed
 (1

x)

San
itiz

ed
 (5

x)

San
itiz

ed
 (1

0x
)

San
itiz

ed
 (5

0x
)

San
itiz

ed
 (2

50
x)

3070 %
2909 %

2218 %

1719 %

752 %

2439 %2333 %2216 %

1719 %

739 %

�1

Figure 4.2: JIT-Decoder and Intel ptxed Performance Comparison

Figure 4.2 shows that the JIT-Decoder easily outperforms the Intel decoder implementa-
tion - even if the JIT-Decoder processes data for the very first time. This could be due to
the use of the Capstone Engine as the instruction decoding backend. Furthermore, the
decoding process of multiple sample copies within the same file provides even better
performance. Since this is a common fuzzing use case, due to the generation of inputs
triggering the same or similar path within the traced code section, it also shows that
the JIT-Decoder is more suitable. Eventually, the fetch and follow approach outperforms
Intel’s implementation and is up to 25 to 30 times faster.

4.3 Fuzzing Performance

Finally, the overall performance of kAFL is compared to the ProjectTriforce kernel
fuzzer. Unfortunately, it was not possible to compare Oracle’s file system fuzzer due to
technical issues. To compare ProjectTriforce with kAFL, the associated TriforceLinuxSy-
callFuzzer* was slightly modified to work with a special kernel module. This kernel
module was used for this benchmark and creates during the on-load routine the file
/proc/vuln. Any write attempt to this file will execute the code shown in listing 4.1.

*https://github.com/nccgroup/TriforceLinuxSyscallFuzzer

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer

4.3. FUZZING PERFORMANCE 67

Listing 4.1 Sample Kernel Module for Benchmark Purposes
1: if (copy_from_user(i, buff, len))
2: return -EFAULT;
3:
4: if(i[0] == ’K’ && i[1] == ’E’ && i[2] == ’R’ && i[3] == ’N’ && i[4] == ’E’ &&
5: i[5] == ’L’ && i[6] == ’A’ && i[7] == ’F’ && i[8] == ’L’)
6: panic("Oops..."); /* testcase #1 */
7:
8: if(i[0] == ’F’ && i[1] == ’U’ && i[2] == ’Z’ && i[3] == ’Z’ && i[4] == ’I’ &&
9: i[5] == ’N’ && i[6] == ’G’)

10: panic("Oops..."); /* testcase #2 */
11:
12: if(i[0] == ’K’ && i[1] == ’A’ && i[2] == ’S’ && i[3] == ’A’ && i[4] == ’N’)
13: kfree(array); array[0] = 1234; /* use-after-free (KASan testcase) */

The input is compared bytewise and in case of one of the following three inputs, the ker-
nel will crash*: KERNELAFL (line 4-6), FUZZING (line 8-10) or KASAN (line 12-13). The follow-
ing diagram in figure 4.3 shows the overall performance (measured in tests per second)
of kAFL based on compile-time instrumentations and kAFL using vmx_pt compared to
ProjectTriforce. To conclude, the hardware-accelerated virtualization and tracing pro-
vides up to 50 times better performance compared to QEMU’s CPU emulation. This
applies to single process execution as well as for multi process execution. Besides that,
the instrumentation-based approach is up to 40% slower than the Intel PT accelerated
approach.

Tabelle 1

TriforceAFL (1
Process)

TriforceAFL (4
Processes)

TriforceAFL (1
Process)

TriforceAFL (4
Processes)

kAFL
instrumentation-
based (1 Process)

kAFL
instrumentation-
based (4 Process)

kAFL vmx_pt (1
Process)

kAFL vmx_pt (4
Processes)

95 200 95 200 3250 6250 4560 10625

47,5 100 0,894117647058824 1,88235294117647 30,5882352941176 58,8235294117647 42,9176470588235 100

0 t/sec

3000 t/sec

6000 t/sec

9000 t/sec

12000 t/sec

TriforceAFL
(1 Process)

TriforceAFL
(4 Processes)

kAFL
(1 Process)

kAFL
(4 Processes)

kAFL & vmx_pt
(1 Process)

kAFL & vmx_pt
(4 Processes)

10625 t/sec

4560 t/sec
6250 t/sec

3250 t/sec

200 t/sec95 t/sec

�1

Figure 4.3: Performance Comparison

*Except for the last input, since this case is used to represent a use-after-free vulnerability and is
usually only detectable if KASan is enabled.

68 CHAPTER 4. EVALUATION

4.4 Vulnerabilities

During the development process of kAFL, multiple security vulnerabilities were found.
In total, 3 bugs were reported to Red Hat to this day:

1. Local DoS: Linux Kernel Nullpointer Dereference via keyctl* (CVE-2016-8650†)

2. Local DoS: Linux Kernel EXT4 Memory Corruption‡

3. Local DoS: Linux Kernel EXT4 Error Handling§

Red Hat has assigned a CVE number for the first reported security flaw, which triggers
a null pointer deference and a partial memory corruption in the kernel ASN.1 parser
if a RSA certificate with a zero exponent is presented. For the second reported vulner-
ability, which triggers a memory corruption in the EXT4 file system, a mainline patch
was proposed¶. The last reported vulnerability, which calls in the EXT4 error handling
routine panic() and hence results in a kernel panic, was currently not investigated any
further.

Those bugs were found by the instrumentation-based kAFL implementation. Currently
only a small subset of all found bugs are reported. More bug reports will follow in the
near future.

*http://seclists.org/fulldisclosure/2016/Nov/76
†https://access.redhat.com/security/cve/cve-2016-8650
‡http://seclists.org/fulldisclosure/2016/Nov/75
§http://seclists.org/bugtraq/2016/Nov/1
¶http://www.spinics.net/lists/linux-ext4/msg54572.html

http://seclists.org/fulldisclosure/2016/Nov/76
https://access.redhat.com/security/cve/cve-2016-8650
http://seclists.org/fulldisclosure/2016/Nov/75
http://seclists.org/bugtraq/2016/Nov/1
http://www.spinics.net/lists/linux-ext4/msg54572.html

Chapter 5

Future Work

The current implementation of kAFL has several limitations. Potential approaches to
bypass these limitations are research fields for future work.

5.1 Sanitization of Non-Deterministic Code Traces

As already mentioned in chapter 3.4.5, tracing of non-deterministic code sections would
result in a large amount of false positive path findings, due to bitmap clobbering. To
deal with this issue, it might be sufficient to black-list code areas. This task would
required manual work and comprehensive knowledge about non-deterministic code
sections of the targeted OS. Since this approach contradicts the general-purpose aim
of kAFL, another more sophisticated approach is desired. Currently multiple promis-
ing approaches are evaluated and developed to deal with this issues in an automated
fashion.

5.2 Inter-VM Communication via Hypercalls

The rely on additional kernel code for the PCI-enumeration of the kAFL guest device
makes it currently difficult to apply kAFL on other operating systems than linux. Oth-
erwise, if no kAFL guest driver is available, the fuzzer will not be able to communi-
cate with the targeted OS and cannot apply internal kernel fuzzing. A very promising
approach would be the use of a Hypercall interface, instead. Hypercalls are usually
triggered by executing the vmcall instruction. Moreover, it does not make a difference,
whether vmcall was executed in kernel or user mode. Therefore, a Hypercall interface
is more feasible, since only the host VMM has to be adapted once and it would further
only require the development of specific user mode drivers instead of full-blown kernel

69

70 CHAPTER 5. FUTURE WORK

drivers for each OS. For this purpose, a proof of concept implementation has already
been developed.

Chapter 6

Conclusion

Latest feedback-driven fuzzing methods have proven as an effective approach to find
vulnerabilities in an automated and comprehensive fashion. Recent work has also
demonstrated that such techniques can be applied to the kernel space. While previ-
ous feedback-driven kernel fuzzers were able to find a large amount of security flaws
in certain operating systems, their benefit was either limited by poor performance due
to CPU emulation or the lack of portability due to the need of compile-time instrumen-
tations.

In this thesis a novel feedback-driven kernel fuzzer was presented, which utilizes latest
CPU features. Combining all components provides a much higher performance than
other approaches and the ability to apply kernel fuzz testing on any target domain.

As shown in the evaluation of this thesis, kAFL provides much higher performance
than other kernel fuzzers. The Intel PT accelerated approach, which also includes the
need of simultaneous trace decoding, is even faster than an instrumentation-based ker-
nel fuzzing approach. Since the development of this kernel fuzzer is still ongoing, it
can be assumed that the performance will improve even more.

Nevertheless, the Intel PT approach comes also with some drawbacks. This includes
the rely on additional kernel code to interact with the kAFL fuzzer, which makes it
difficult and costly to apply kAFL on other OSs than Linux. Furthermore, the filtering
of non-deterministic code in non-interrupt context is currently not fully solved and
therefore it limits the applicability of kAFL. Since for both issues potential solutions are
proposed, the further evolutions and development will show how they perform.

71

72 CHAPTER 6. CONCLUSION

Acronyms

AFL American Fuzzy Lop.
APIC Advanced Programmable Interrupt Controller.

BAR Base Address Registers.
BLOB Binary Large Object.

CoFI Change of Flow Instructions.
CoW Copy-on-Write.
CPL Current Privilege Level.

EPT Extended Page Tables.

GPR General Purpose Register.

Intel PT Intel Processor Trace.
IP Instruction Pointer.
IRQ Interrupt Request.
ISR Interrupt Service Routine.

kAFL kernel AFL.
KVM Kernel-based Virtual Machine.

LVT PMI Local Vector Table Performance Monitor Interrupt.

MMIO Memory-mapped I/O.
MSR Model Specific Register.

NMI Non-Maskable Interrupt.

OS Operating System.

PFN Page Frame Number.
PML4T Page Map Level 4 Table.

73

74 Acronyms

QEMU Quick Emulator.

ToPA Table of Physical Addresses.

vCPU virtual CPU.
VM Virtual Machine.
VMCS Virtual Machine Control Structure.
VMM Virtual Machine Monitor.
VMX Virtual Machine Extension.

Bibliography

[PG74] Gerald J Popek and Robert P Goldberg. “Formal requirements for virtual-
izable third generation architectures”. In: Communications of the ACM 17.7
(1974), pp. 412–421.

[MFS90] Barton P. Miller, Louis Fredriksen, and Bryan So. “An empirical study of
the reliability of UNIX utilities”. In: Communications of the ACM 33.12 (1990),
pp. 32–44. ISSN: 00010782. DOI: 10.1145/96267.96279. URL: http://ftp.cs.
wisc.edu/paradyn/technical%7B%5C_%7Dpapers/fuzz.pdf.

[Int96] Intel Intel. Intel® 82093AA I/O Advanced Programmable Interrupt Controller
(IOAPIC), May 1996). 1996. URL: http://www.intel.com/design/chipsets/
datashts/29056601.pdf.

[RI00] John Scott Robin and Cynthia E Irvine. “Analysis of the Intel Pentium’s
ability to support a secure virtual machine monitor”. In: Proceedings of the
USENIX Security Symposium 8.3 (2000), p. 10. ISSN: 15407993. DOI: 10.1109/
MSP.2010.92. URL: http://portal.acm.org/citation.cfm?id=1251316.

[Luk+05] Chi-Keung Luk et al. “Pin: Building customized program analysis tools
with dynamic instrumentation”. In: Proceedings of the Conference on Program-
ming Language Design and Implementation. 2005, pp. 190–200. ISBN: 1-59593-
056-6. DOI: 10.1145/1065010.1065034. URL: http://doi.acm.org/10.1145/
1065010.1065034.

[Kiv+07] Avi Kivity et al. “kvm: the Linux virtual machine monitor”. In: Proceedings
of the Linux Symposium 1 (2007), pp. 225–230. ISSN: 1465-6906. DOI: 10.1186/
gb-2008-9-1- r8. URL: https://www.kernel.org/doc/mirror/ols2007v1.
pdf%7B%5C#%7Dpage=225.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems
Programs”. In: Proceedings of the 8th USENIX conference on Operating systems

75

http://dx.doi.org/10.1145/96267.96279
http://ftp.cs.wisc.edu/paradyn/technical%7B%5C_%7Dpapers/fuzz.pdf
http://ftp.cs.wisc.edu/paradyn/technical%7B%5C_%7Dpapers/fuzz.pdf
http://www.intel.com/design/chipsets/datashts/29056601.pdf
http://www.intel.com/design/chipsets/datashts/29056601.pdf
http://dx.doi.org/10.1109/MSP.2010.92
http://dx.doi.org/10.1109/MSP.2010.92
http://portal.acm.org/citation.cfm?id=1251316
http://dx.doi.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://dx.doi.org/10.1186/gb-2008-9-1-r8
http://dx.doi.org/10.1186/gb-2008-9-1-r8
https://www.kernel.org/doc/mirror/ols2007v1.pdf%7B%5C#%7Dpage=225
https://www.kernel.org/doc/mirror/ols2007v1.pdf%7B%5C#%7Dpage=225

76 BIBLIOGRAPHY

design and implementation (2008), pp. 209–224. ISSN: <null>. DOI: 10.1.1.142.
9494. URL: http://portal.acm.org/citation.cfm?id=1855756.

[GLM08] Patrice Godefroid, Michael Y. Levin, and David a. Molnar. “Automated
Whitebox Fuzz Testing”. In: Search 9.July (2008), pdf. ISSN: 1064-3745. DOI:
10.1007/978-3-642-02652-2_1. URL: http://citeseerx.ist.psu.edu/viewdoc/
download ? doi = 10 . 1 . 1 . 151 . 9430 % 7B % 5C & %7Drep = rep1 % 7B % 5C &
%7Dtype=pdf.

[Rus08] Rusty Russell. “Virtio”. In: ACM SIGOPS Operating Systems Review 42 (2008),
pp. 95–103. ISSN: 01635980. DOI: 10.1145/1400097.1400108.

[VMw08] VMware VMware. Understanding Full Virtualization, Paravirtualization, and
Hardware Assist. 2008. Chap. Software Technique: Binary Translation. URL:
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/
pdf/techpaper/VMware_paravirtualization.pdf.

[AEW09] Andrea Arcangeli, Izik Eidus, and Chris Wright. “Increasing memory den-
sity by using KSM”. In: Proceedings of the linux symposium. 2009, pp. 19–28.
URL: http ://www.kernel .org/doc/ols/2009/$%5Cbackslash$nhttps :
//www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf.

[VMw09] VMware VMware. Software and Hardware Techniques for x86 Virtualization.
2009. Chap. Software Technique: Binary Translation. URL: https://www.
vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
software_hardware_tech_x86_virt.pdf.

[Mac11] A. Cameron Macdonell. “Shared-memory Optimizations for Virtual Ma-
chines”. AAINR89468. PhD thesis. Edmonton, Alta., Canada, 2011. ISBN:
978-0-494-89468-2.

[SSS14] Sergej Schumilo, Ralf Spenneberg, and Hendrik Schwartke. “Don’t trust
your USB! How to find bugs in USB device drivers”. In: (2014). URL: https:
//www.blackhat.com/docs/eu- 14/materials/eu- 14- Schumilo- Dont-
Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf.

[Cha15] Baruch Chaikin. “Micro VMMs and Nested Virtualization”. 2015. URL: http:
//tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2015/09/
BC_Micro-VMMs-and-Nested-Virtualization.pdf.

http://dx.doi.org/10.1.1.142.9494
http://dx.doi.org/10.1.1.142.9494
http://portal.acm.org/citation.cfm?id=1855756
http://dx.doi.org/10.1007/978-3-642-02652-2_1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.9430%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.9430%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.9430%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://dx.doi.org/10.1145/1400097.1400108
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
http://www.kernel.org/doc/ols/2009/$%5Cbackslash$nhttps://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
http://www.kernel.org/doc/ols/2009/$%5Cbackslash$nhttps://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/software_hardware_tech_x86_virt.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/software_hardware_tech_x86_virt.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/software_hardware_tech_x86_virt.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2015/09/BC_Micro-VMMs-and-Nested-Virtualization.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2015/09/BC_Micro-VMMs-and-Nested-Virtualization.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2015/09/BC_Micro-VMMs-and-Nested-Virtualization.pdf

BIBLIOGRAPHY 77

[HN16a] Jesse Hertz and Tim Newsham. Project Triforce: AFL + QEMU + kernel =
CVEs! (or) How to use AFL to fuzz arbitrary VMs. https : / / github . com /
nccgroup/TriforceAFL/blob/master/slides/ToorCon16_TriforceAFL.pdf.
2016.

[HN16b] Jesse Hertz and Tim Newsham. Project Triforce: Run AFL on Everything! https:
//www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/
june/project-triforce-run-afl-on-everything/. Blog. 2016.

[Jur16] Mateusz Jurczyk. A year of Windows kernel font fuzzing #2: the techniques.
https ://googleprojectzero.blogspot .de/2016/07/a- year- of- windows-
kernel-font-fuzzing-2.html. Blog. 2016.

[NC16] Vegard Nossum and Quentin Casasnovas. Filesystem Fuzzing with American
Fuzzy Lop. Vault 2016. 2016. URL: https : / / events . linuxfoundation . org /
sites / events / files / slides / AFL % 20filesystem % 20fuzzing , %20Vault %
202016_0.pdf.

[OS16] Shlomi Oberman and Ron Shina. “COFI Break: Breaking Exploits with Prac-
tical Control Flow Integrity”. In: (2016). URL: http://gsec.hitb.org/sg2016/
sessions / cofi - break - breaking - exploits - with - practical - control - flow -
integrity/.

[Ste+16] Nick Stephens et al. “Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution”. In: Ndss. February. 2016, pp. 21–24. ISBN: 189156241X. DOI:
10.14722/ndss.2016.23368.

[Inta] Intel Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual (Or-
der number: 325384-058US, April 2016). Chap. 23. Introduction to Virtual Ma-
chine Extensions.

[Intb] Intel Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual (Or-
der number: 325384-058US, April 2016). Chap. 24. Virtual Machine Control
Structures.

[Intc] Intel Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual (Or-
der number: 325384-058US, April 2016). Chap. 36. Intel®Processor Trace.

[Kle] Andi Kleen. simple-pt - Simple Intel CPU processor tracing on Linux. https :
//github.com/andikleen/simple-pt.

[PPt] Linux 4.8, perf Documentation, Linux/tools/perf/Documentation/intel-pt.txt.
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/
tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8.

https://github.com/nccgroup/TriforceAFL/blob/master/slides/ToorCon16_TriforceAFL.pdf
https://github.com/nccgroup/TriforceAFL/blob/master/slides/ToorCon16_TriforceAFL.pdf
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://googleprojectzero.blogspot.de/2016/07/a-year-of-windows-kernel-font-fuzzing-2.html
https://googleprojectzero.blogspot.de/2016/07/a-year-of-windows-kernel-font-fuzzing-2.html
https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
http://gsec.hitb.org/sg2016/sessions/cofi-break-breaking-exploits-with-practical-control-flow-integrity/
http://gsec.hitb.org/sg2016/sessions/cofi-break-breaking-exploits-with-practical-control-flow-integrity/
http://gsec.hitb.org/sg2016/sessions/cofi-break-breaking-exploits-with-practical-control-flow-integrity/
http://dx.doi.org/10.14722/ndss.2016.23368
https://github.com/andikleen/simple-pt
https://github.com/andikleen/simple-pt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8

78 BIBLIOGRAPHY

[Swi] Robert Swiecki. A general-purpose, easy-to-use fuzzer with interesting analysis
options. https://google.github.io/honggfuzz/.

[Vyu] Dmitry Vyukov. syzkaller - linux syscall fuzzer. https://github.com/google/
syzkaller.

[Zal] Michael Zalewski. Technical "whitepaper" for afl-fuzz. http://lcamtuf.coredump.
cx/afl/technical_details.txt.

https://google.github.io/honggfuzz/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Contribution
	Related Work
	Structure of the Work

	Background
	American Fuzzy Lop
	General
	Algorithm
	Fuzzing Techniques
	AFL-Bitmap
	Fork-Server
	Runtime Complexity
	Challenges of Applying AFL on Kernelspace

	Intel VT-x
	Terminology
	General
	VMX Operation
	VMX Transitions
	Virtual Machine Control Structures

	KVM / QEMU
	General
	KVM Architecture
	KVM API

	Intel Processor Trace
	Execution Information Packets
	Flow Information Packets
	Intel PT Software Decoder
	Trace Filtering
	Table of Physical Addresses
	VMX Tracing

	Design and Implementation
	kAFL Fuzzer
	Architecture
	Compiler Wrapper
	kAFL Guest Device
	kAFL Guest Driver
	Inter-VM Communication

	vmx_pt KVM Extension
	Intel PT Aware Hypervisor
	ToPA Configuration
	Entry / Exit Handling
	Userspace Interface

	QEMU PT
	vmx_pt Integration
	Management Interface

	JIT-Decoder
	Decoding of Trace Data
	Binary Disassembling and Model Transfer
	Fetch and Follow
	Bitmap Translations
	Trace Data Sanitization

	Evaluation
	vmx_pt Overhead
	Decoder Engine
	Fuzzing Performance
	Vulnerabilities

	Future Work
	Sanitization of Non-Deterministic Code Traces
	Inter-VM Communication via Hypercalls

	Conclusion

